Аннотация
В книге представлены некоторые наши результаты, относящиеся к теории классических клеточных автоматов (КА). В настоящее время эти результаты составляют довольно существенную составляющую общей теории клеточных автоматов. В частности, мы изучали такие проблемы, как проблема неконструируемости конфигураций в КА, экстремальные конструктивные возможности, проблема сложности конечных конфигураций и глобальных функций перехода в КА, параллельные формальные грамматики и языки, определенные КА, моделирование в клеточных автоматах, декомпозиция глобальных функций перехода в КА и т.д. В настоящее время проблематика КА представляет собой достаточно хорошо развитый независимый раздел математической кибернетики, имеющий весьма широкую область различных приложений. Более того, с равным правом КА–проблематику можно рассматривать в качестве компоненты таких областей, как дискретные параллельные динамические системы, дискретная математика, кибернетика, сложные системы наряду с рядом других. По нашему мнению, настоящая книга представит определенный интерес для студентов, аспирантов и всех тех лиц, которые работают в рамках получения научной степени доктора наук соответствующих факультетов университетов, прежде всего естественно–научного уровня наряду с преподавателями по таким предметам, как теория автоматов, информатика, математическое и физическое моделирование, дискретная математика, кибернетика, теоретическая биология, компьютерная техника и многие другие. Следует отметить, что в последнее время классические клеточные автоматы являются одной из наиболее перспективных модельных сред для различных высоко–параллельных дискретных процессов, объектов и явлений, которые допускают обратимую динамику, что достаточно важно, в первую очередь, с физической точки зрения.
![В доступной форме рассказано о развитии традиционных разделов математики второй половины XIX - начала XXI в., создании новых разделов математики. Представлены... Современная математика и ее творцы [отрывки из книги]](https://www.rulit.me/data/programs/images/sovremennaya-matematika-i-ee-tvorcy-otryvki-iz-knigi_415461.jpg)



![В 1881 году французский ученый Анри Пуанкаре писал: «Математика — всего лишь история групп». Сегодня мы можем с уверенностью утверждать, что это высказывание... Пока алгебра не разлучит нас [Теория групп и ее применение]](https://www.rulit.me/data/programs/images/poka-algebra-ne-razluchit-nas-teoriya-grupp-i-ee-primenenie_405638.jpg)



Комментарии к книге "Базовые элементы теории клеточных автоматов"