Выбрать главу

As far as the evidence goes, this is one of the most convincing cases of a monumental solstitial alignment constructed in the Bronze Age in the whole of Britain and Ireland. Compared with the possible observing platform at Kintraw, for example, the structures at Brainport Bay show clear evidence of human activity and enhancement of the natural features, but not of habitation or burial. It is a prime candidate, in other words, for a ceremonial or ritual site. We are still a long way from knowing what the solstice meant to the people who, we assume, came and observed or worshipped here at dawn on or around the longest day of the year. It is tempting, though, to imagine a priest or two, or perhaps a couple of other people of special social standing, observing the event from the special vantage of the observation boulders while a larger audience had to content themselves with standing on the back platform up the hill behind. On the basis of current evidence, though, this remains speculative.

Despite this relatively straightforward and impressive alignment, the site nevertheless became controversial. This is because of additional suggestions by Euan MacKie, the archaeologist who had originally excavated at Kintraw and was also responsible for bringing Brainport Bay to the attention of a wider audience. One of MacKie’s ideas was that the Brainport Bay alignment was not imprecise and not just used for ceremonial purposes: it was a precision observing instrument for determining the exact date of the solstice. It is difficult to determine the exact date of the solstice, because the change in the rising position of the sun on days near to the solstice is only minuscule. The horizon notch that the “rifle barrel” stones align upon actually marked the first gleam of sunrise about fifteen days before and after the solstice. The prehistoric observers, according to MacKie, would have determined the solstice by counting the number of days between the two times when the sun rose in the notch and halving the difference.

The problem with this argument is that it cuts both ways. Counting in its favor is the fact that if prehistoric people were trying to determine the solstice, then using a horizon notch displaced from the actual solstitial rising position of the sun and halving the difference would have been a very sensible way to do it, because they were focusing on a place on the horizon where the day-to-day change in the position of sunrise was easily perceptible. Counting against the idea, though, is the fact that any notch within a short distance of the solstice is susceptible to a similar argument, since we do not have direct knowledge about the interval of time around the solstice that would have to be halved. In mountainous country there are lots of notches, and the chances of a fortuitous alignment are very considerable. The upshot is that on the basis of the evidence available to us we can only return one verdict—and fortunately it is one that is allowed in the Scottish legal system—namely, “not proven.”

MacKie went further still. There are a variety of other signs of human activity in the immediate area around the Brainport Bay alignment, including a 3.4 meters (11 feet) long fallen standing stone and cup markings on rock outcroppings. The whole area, MacKie suggested, formed a “calendrical complex,” with several precise alignments upon sunrise or sunset on epoch dates in the “megalithic” calendar. But critics have pointed out a number of difficulties, particularly the fact that the alleged calendrical alignments at Brainport Bay are marked in very different ways: across a platform to a pyramid-shaped stone; from a standing stone to a cup mark on a rock; and along the line of a cup-and-groove mark (but not along a similar cup-and-groove mark on another stone). A great many potential alignments of various types exist here, which implies that the calendrical ones could easily have arisen fortuitously.

See also:

“Megalithic” Calendar; Methodology; Solstitial Alignments. Kintraw; Newgrange. Obliquity of the Ecliptic; Solstices.

References and further reading

Ruggles, Clive. Astronomy in Prehistoric Britain and Ireland, 29–34. New

Haven: Yale University Press, 1999.

———, ed. Records in Stone: Papers in Memory of Alexander Thom,

213–224. Cambridge: Cambridge University Press, 2002.

Brodgar, Ring of

The Ring of Brodgar is one of the most impressive, and one of the two most northerly, examples in Britain of a henge monument containing a stone circle. The stone circle is over 100 meters (330 feet) across, standing within a ditch over 120 meters (400 feet) in diameter (the outer bank has now almost completely disappeared). Several of the stones rise to a height of over 3 meters (10 feet). Located on the largest of the Orkney Islands (Mainland Orkney) off the northern coast of Scotland, it occupies a magnificent situation toward the end of a long, narrow isthmus projecting into a large freshwater lake (the lochs of Harray and Stenness). Just 1.5 kilometers (1 mile) away are the even taller Stones of Stenness, another henge and stone circle in a matching situation: Stenness occupies a shorter isthmus on the other side of a 200 meters (700 feet) gap that one can now cross by a road bridge. The Ring of Brodgar was clearly of paramount importance in the prehistoric landscape in around 3000 B.C.E., when it was probably constructed. Standing sentinel over what was almost certainly an important route across the island, and clearly visible from all around, it occupied a position of great power and influence. That it remained a conspicuous ancestral monument revered for many generations seems evident from the numerous round cairns that were built around it in the Bronze Age, more than a millennium later.

The site achieved astronomical notoriety in the 1970s when Alexander Thom and his son Archie first published the theory that it was a sophisticated lunar observatory. According to the Thoms, various alignments at the site, mostly between the outlying cairns, were deliberately aligned upon horizon foresights that marked limiting rising and setting positions in the moon’s complex cycles. So precise were the alleged alignments—to less than two arc minutes—that the Thoms were forced to conclude that programs of observation lasting many generations must have been needed.

The Ring of Brodgar, more than any other single monument, demonstrates the dangers of over-enthusiastic interpretation in archaeoastronomy. Time has dealt harshly with the “lunar observatory” hypothesis. The problem lies in the selection of data: the selection of alignments, the selection of foresights, and the selection of lunar “targets” deemed significant are all highly questionable. The four foresights, for example, are of varying degrees of conspicuity, varying from the crest of the impressive distant cliffs of Hellia 13 kilometers (8 miles) away on the island of Hoy, down to an almost imperceptible blip on the horizon at a place called Ravie Hill. There is no reason (other than their lunar potential) to pick out the four chosen from the many dozens, if not hundreds, of other possibilities.

Above all, the example of Brodgar shows the paramount importance of a field methodology that ensures the fair selection of data and its critical assessment. It is all too easy, even for a professional academic working outside his or her own discipline, to end up—unwittingly—merely picking out the evidence that seems to support a favored theory while ignoring the rest.