dar Round; Mursi Calendar; Namoratung’a.
Heliacal Rise; Inferior Planets, Motions of; Lunar Phase Cycle; Solstices; Su
perior Planets, Motions of.
References and further reading
Aveni, Anthony F. Empires of Time: Calendars, Clocks and Cultures. New
York: Basic Books, 1989.
McCready, Stuart, ed. The Discovery of Time. Naperville, IL: Sourcebooks,
2001.
Callanish
In one of the most remote corners of Britain stands one of the country’s most impressive megalithic monuments. The standing stones of Callanish (an anglicization of the Gaelic name, Calanais) can be found on the western shores of the Isle of Lewis in the Outer Hebrides off western Scotland. They occupy a commanding situation overlooking what is now a stark landscape of heathery peat bogs and, to the west, the sea inlet of East Loch Roag. The site, dating to the third millennium B.C.E., consists of a ring of tall menhirs—the ring is 13 meters (43 feet) across and the stones vary from 3 meters (10 feet) to 4 meters (13 feet) in height—surrounding a small, chambered tomb. Rows of four or five stones radiate out to the east, west, and south. Northwards, but displaced by about ten degrees to the east, runs a longer double row or avenue. Several smaller stone circles and settings of standing stones are found in the vicinity.
The site first achieved astronomical notoriety when a survey was published by Vice-Admiral Boyle Somerville in 1912. It included the first-ever suggestion that a megalithic monument might have been aligned upon the moon at an extreme rising or setting point in its 18.6-year cycle, known as the lunar node cycle. As Somerville pointed out, the avenue is aligned southwards in the direction of the most southerly possible setting point of the moon, which the moon can only reach every eighteenth or nineteenth year. This idea was elaborated in the 1960s and 1970s by Gerald Hawkins, the author of Stonehenge Decoded, and by the Scottish engineer Alexander Thom. The Greek historian Diodorus of Sicily, writing in the first century B.C.E., referred to a sacred precinct or circular temple in the island of the Hyperboreans where the moon appeared close to the earth and the god returned every nineteen years, and it has been suggested by some people, including the British archaeologist Aubrey Burl, that Diodorus referred to terpretations are problematic.)
However, the failure of mid-twentieth-century attempts to populate the prehistoric past with an intellectual or priestly elite prepossessed with high-precision astronomical observations should not blind us to the basic relationship with the moon that exists at the Callanish stones, or with what this might actually have meant to the Neolithic populations of this area. The full or nearly full moon scraping uncommonly low over the hills to the south and then—as viewed along the avenue—passing behind and setting among the stones of the circle, casting them into silhouette, would have been a truly spectacular sight, one that could only have been seen once or twice in a generation. If this was intentional from the outset, then it would certainly explain the skewing of the avenue away from the meridian. It would also have ensured that this location was charged with tremendous sacred power at these special times.
It has been suggested that the standing stones of Callanish and the various smaller megalithic monuments in the surrounding area incorporated numerous alignments upon prominent horizon features and extreme lunar rising and setting positions. The Callanish stones, it was proposed, stood at the heart of a complex that encapsulated a variety of relationships between built monuments, prominent natural features in the landscape, and the motions of the moon. The general idea is not implausible: indigenous societies commonly organize sacred space to reflect cosmic relationships perceived in the wider visual setting, and the visible environment included the sky. But in the absence of corroborating evidence, it is almost impossible to argue convincingly for any particular scheme. We have no way of knowing which relationships actually were perceived as significant in the past, and any choice that we make is ultimately subjective. Whether the Callanish stones really represent a temple whose significance related to the moon appearing in a special way in every nineteenth year remains an open question.
See also:
Cardinal Directions; Somerville, Boyle (1864–1936); Thom, Alexander
(1894–1985). Stonehenge. Meridian; Moon, Motions of.
References and further reading
Ashmore, Patrick. Calanais: The Standing Stones. Stornoway, Scotland: Urras nan Tursachan, 1995.
Burl, Aubrey. From Carnac to Callanish: The Prehistoric Stone Rows and Avenues of Britain, Ireland and Brittany, 63–65, 179–180. New Haven: Yale University Press, 1993.
———. A Guide to the Stone Circles of Britain, Ireland and Brittany, 148–152. New Haven: Yale University Press, 1995. ———. The Stone Circles of Britain, Ireland and Brittany, 202–207. New Haven: Yale University Press, 2000.
Ruggles, Clive. Megalithic Astronomy: A New Archaeological and Statistical Study of 300 Western Scottish Sites, 75–98. Oxford: British Archaeological Reports (British Series 123), 1984.
———. Astronomy in Prehistoric Britain and Ireland, 88–89, 134–136. New Haven: Yale University Press, 1999. ———, ed. Archaeoastronomy in the 1990s, 309–316. Loughborough, UK: Group D Publications, 1993. ———, ed. Records in Stone: Papers in Memory of Alexander Thom, 426–431. Cambridge: Cambridge University Press, 2002.
Ruggles, Clive, and Alasdair Whittle, eds. Astronomy and Society in Britain during the Period 4000–1500 BC, 63–110. Oxford: British Archaeological Reports (British Series 88), 1981.
Thom, Alexander. Megalithic Lunar Observatories, 68–69. Oxford: Oxford University Press, 1971.
An extraordinary feature of Mesoamerican astronomy, given the complexity and sophistication evident from the ethnohistory and written sources such as the Dresden Codex, is the apparent lack of any observatories or observing instruments apart from the cross-sticks depicted in various codices, widely interpreted as a naked-eye sighting device. One of the very few serious candidates for a building used as an observatory is the Caracol at Chichen Itza.
Chichen Itza is one of the most famous Maya cities. Like Uxmal, it flourished around C.E. 800, but its influence appears to have persisted while many other cities were abandoned and fell into ruin. During the Postclassic period (C.E. 900–1300), before Chichen Itza itself fell into ruin, its sphere of influence became greatly extended and the constructions forming its ceremonial center became bigger and more impressive than ever. Even so, the Caracol stands out as exceptional. The reason is not so much its size as its shape: it is round, while every other visible construction here is straight-sided. As such the Caracol is almost unique, and certainly uniquely preserved. The round tower was ascended by a curved staircase running inside its double outer walls, leading to a small upper chamber with windows on various sides—or so it is supposed, since less than half of it now survives.