Выбрать главу

Но если мозг — это сложный орган, состоящий из множества частей, для подобных выводов нет оснований. Первичная сенсорная кора — это не краеугольный камень разума, а устройство, одно из многих, предназначенное для обработки определенных видов сигналов на первых стадиях сенсорного анализа. Представим, что первичная сенсорная кора бесформенна, а структуру ей придают исключительно входные сигналы. Значило бы это, что весь мозг не имеет структуры и получает ее лишь из информации на входе? Вовсе нет. Начнем с того, что даже первичная сенсорная кора — это только одна из частей огромной сложной системы. Чтобы представить вещи в более широком контексте, ниже приведена современная диаграмма связей внутри зрительной системы приматов[39] (см. рис. ниже).

Первичная зрительная кора — блок внизу, обозначенный VI. Это лишь одна из как минимум 50 отдельных областей мозга, занятых обработкой визуальной информации. (Несмотря на то что схема напоминает сваренные спагетти, не каждый элемент с чем-то связан. На самом деле мозг создает только третью часть всех теоретически возможных связей.) Первичной зрительной коры как таковой недостаточно, чтобы видеть. На самом деле она настолько глубоко скрыта в визуальной системе, что Фрэнсис Крик и нейроученый Кристоф Кох доказывали, что мы не осознаем ничего, что там происходит[40]. То, что мы видим, — знакомые разноцветные объекты, расположенные в определенном порядке или двигающиеся по определенным траекториям, — результат работы этого хитроумного изобретения в целом. Так что даже если внутреннее строение блока VI полностью определяется поступающей из внешнего мира информацией, нам придется объяснить архитектуру остальной части зрительной системы — 50 других блоков и связей между ними. Я не утверждаю, что генетически запрограммирована вся диаграмма целиком, но ее бо́льшая часть — скорее всего, да[41].

И конечно, зрительную систему тоже нужно поставить на свое место, потому что это только часть мозга. В коре насчитывается более 50 зон с различными связями и анатомией, и зрительная система преобладает примерно в полудюжине из них. Другие зоны обеспечивают прочие функции — язык, мышление, планирование, социальные навыки. И хотя никто не знает, до какой степени они генетически предуготовлены для выполнения своих вычислительных ролей, есть основания считать, что влияние генов значительно[42]. Разделение закладывается еще в утробе, даже если кора в процессе развития отрезана от сигналов из внешнего мира. Когда мозг развивается, в различных его областях активируются разные наборы генов. Мозг обладает целым комплектом механизмов для установления связей между нейронами, включая молекулы, которые притягивают или отталкивают аксоны (выходные волокна нейронов), чтобы направить их к цели, и молекулы, которые приклеивают их в нужном месте или же, наоборот, мешают присоединению. Число, размер и возможность образования связей в корковых зонах разные у разных видов млекопитающих, различаются они и среди людей и других приматов. Это разнообразие — продукт генетических мутаций в процессе эволюции, в чьи тайны мы только начинаем проникать[43]. Например, недавно генетики обнаружили, что в развивающемся мозге человека и в развивающемся мозге шимпанзе активны различные наборы генов[44].

Под микроскопом разные части коры не отличаются друг от друга, что, как кажется, противоречит предположению о функциональной специализации зон коры. Но поскольку мозг — система обработки информации, это практически ничего не значит. Микроуглубления на поверхности компакт-диска выглядят одинаково, независимо от того, что на нем записано, и строчки букв в разных книгах выглядят одинаково для того, кто не умеет читать. Содержание носителя информации кодируется комбинациями элементов (что касается мозга — особенностями нервных связей) и не зависит от того, как они выглядят.

Да и кора — это еще не весь мозг. Под ней находятся другие отделы, управляющие важными сторонами человеческой природы. Гиппокамп, объединяющий память и поддерживающий ментальные карты, амигдала, окрашивающая опыт эмоциями, и гипоталамус, порождающий сексуальное желание и прочие влечения. Многие нейроученые, даже впечатленные пластичностью коры, признают, что подкорковые структуры гораздо менее пластичны[45]. Это не мелкая придирка к анатомии. Некоторые комментаторы считают, что нейропластичность отменяет эволюционную психологию, потому что подвижность коры якобы доказывает, что специализация мозга не заложена в процессе эволюции[46]. Но большинство предположений эволюционной психологии касается стимулов вроде страха, секса, любви и агрессии, которые по большей части базируются в подкорковых структурах. И какой бы теории мы ни придерживались, в любом случае врожденные человеческие способности должны располагаться в сети корковых и подкорковых зон, а не в каком-то одном участке сенсорной коры.

вернуться

39

 Van Essen & Deyoe, 1995, p. 388.

вернуться

40

 Crick & Koch, 1995.

вернуться

41

 Bishop, Coudreau, & O'Leary, 2000; Bourgeois, Goldman-Rakic, & Rakic, 2000; Chalupa, 2000; Katz, Weliky, & Crowley, 2000; Levitt, 2000; Miyashita-Lin et al., 1999; Rakic, 2000; Rakic, 2001; Verhage et al., 2000; Zhou & Black, 2000.

вернуться

42

 См. предыдущую ссылку, а также Geary & Huffman, 2002; Krubitzer & Huffman, 2000; Preuss, 2000; Preuss, 2001; Tessier-Lavigne & Goodman, 1996.

вернуться

43

 Geary & Huffman, 2002; Krubitzer & Huffman, 2000; Preuss, 2000; Preuss, 2001.

вернуться

44

 D. Normile, "Gene expression differs in human and chimp brains," Science, 292, 2001, pp. 44–45.

вернуться

45

 Kaas, 2000, p. 224.

вернуться

46

 Hardcastle & Buller, 2000; Panksepp & Panksepp, 2000.