Выбрать главу

В предположении, что верна нулевая гипотеза и что исследование повторяется бесконечное число раз с помощью случайных выборок из той же самой совокупности людей, менее 5 % этих результатов будут более экстремальны, чем текущий результат.

Стало понятнее? Давайте разбираться.

Предположим, мы хотим что-то выяснить. Например, помогает ли чтение книг с названием «Цифры врут» лучше понимать статистику, которая приводится в новостях. Возьмем солидную выборку из тысячи человек: в нее войдут некоторые из тех миллионов людей, кто прочитал эту книгу, а также несколько людей, которые – увы! – этого не сделали. (Для простоты будем считать, что до того, как кто-то ознакомился с нашим трудом, группы были совершенно одинаковыми; хотя понятно, что на самом деле покупатели этой книги в среднем намного талантливее, умнее и красивее, чем остальное население.)

Потом проведем среди этих людей несложный тест, чтобы проверить их знания статистики и узнать, лучше ли результаты у тех, кто прочитал книгу.

Предположим, что да, лучше. А как узнать, не простая ли это случайность? Наши читатели действительно лучше справляются с тестом или это случайная вариация? Для ответа на этот вопрос мы воспользуемся специальной методикой – проверкой достоверности (или проверкой гипотезы).

Так, предположим, что «Цифры врут» никак не влияют на читателей, и представим результаты. Это называется нулевой гипотезой. При другом варианте – альтернативной гипотезе – книга произвела некий положительный эффект.

Это хорошо иллюстрируется графиком. Если верна нулевая гипотеза, то пик кривой будет возле среднего значения – большинство людей окажется в середине, оттеснив на края тех немногих, кто выполнит тест очень хорошо или очень плохо. Сама кривая будет похожа на кривую нормального распределения из главы 3. При этом среднее значение и график кривой окажутся похожими у обеих групп (тех, кто прочитал книгу, и тех, кто этого не сделал).

Если же верна альтернативная гипотеза, то средний балл читателей будет выше среднего балла другой группы и кривая распределения для этой группы сместится вправо.

Но даже если верна нулевая гипотеза и книга не оказывает никакого эффекта; если – внезапно – окажется, что обе группы одинаково хорошо разбираются в статистике, все равно останется одна проблема – вам не избежать случайных вариаций. У кого-то будет просто неудачный день. Вспомните фильм «Осторожно! Двери закрываются» – Гвинет Пэлтроу в одной вселенной пропускает свой поезд, опаздывает на наш тест, расстраивается и сдает его плохо; а в другой – приходит вовремя, блестяще отвечает на вопросы и влюбляется в Джона Ханну. Пунктуальность и душевное равновесие, вероятно, не сделают из девушки эксперта по статистике, однако благоприятно отразятся на результатах теста. Есть некоторая (пусть и небольшая) доля случайности в том, насколько хорошо каждый участник выполнит задания.[12]

Если несколько не читавших книгу выполнят тест очень плохо, а несколько прочитавших – очень хорошо, это может заметно изменить среднее значение – покажется, что читатели в общем проходят тест намного лучше.

Итак, представим, что по какой-то причине ваши результаты говорят, что читатели лучше справляются с тестом. Теперь важно узнать, насколько вероятно получить такие (или еще более экстремальные) результаты, если верна ваша нулевая гипотеза – чтение книги не влияет, а все вариации случайны. Это и называется проверкой достоверности.

Нет конкретного значения, при котором абсолютно ясно, что нулевая гипотеза неверна: теоретически даже самые сильные различия могут оказаться случайными. Но чем больше разница, тем меньше шансов, что это случайно. Ученые измеряют шансы случайного совпадения с помощью вероятности, или p-значения.

Чем менее правдоподобна случайность какого-нибудь события, тем меньше p. Если есть только один шанс из ста, что получится не менее экстремальный результат, если чтение книги не оказывает никакого эффекта, то p = 0,01. (Однако это не значит – и это ИСКЛЮЧИТЕЛЬНО ВАЖНО, настолько, что мы дважды напишем «ИСКЛЮЧИТЕЛЬНО ВАЖНО» прописными буквами, что вероятность того, что данный результат неверен, составляет одну сотую. Мы позже вернемся к этому, а пока просто отметим как факт.)

Во многих науках принято считать, что если p меньше или равно 0,05 – иными словами вы ожидаете увидеть столь экстремальные результаты не более чем в 5 % случаев, – то открытие статистически значимо, а нулевую гипотезу можно отвергнуть.

вернуться

12

В оригинальном фильме Хелен (Гвинет Пэлтроу), главная героиня, не решает никаких математических задач: в одной параллельной вселенной она успевает на последний поезд и узнает об изменах бойфренда, в другой – опаздывает и остается в неведении. – Прим. ред.