Инженеры применяют разнообразные методы моделирования, чтобы получить приблизительные репрезентации[4] реальности, которые по определению не являются точными. Есть два основных вида моделей: имплицитные[5] и эксплицитные[6]. В имплицитных моделях, согласно описанию Джошуа Эпштейна, профессора Университета Джонса Хопкинса, «предположения скрыты, внутренняя согласованность не проверена, их логические последствия неизвестны, как и их соответствие данным». В связи с этим, «когда вы закрываете глаза и представляете себе распространение эпидемии или какой-либо другой динамический процесс в обществе, то применяете ту или иную модель. Просто это имплицитная модель, которую вы не записали». В эксплицитных же моделях предположения, эмпирические оговорки и уравнения четко представлены для анализа и проверки. При одном наборе предположений «происходит одно; а когда вы их меняете – другое».
Среди многих преимуществ моделирования, как подчеркивает Эпштейн, в том числе и возможность «продемонстрировать компромиссы и предложить способы повышения эффективности или даже выяснить, что кажущееся простым на самом деле сложно, [а сложное – просто]». Модели выявляют области, требующие больше данных, и показывают, какую нужно выполнить работу. Сбор данных о загруженности дорог во всех уголках Стокгольма подкрепил модель IBM и окончательное решение компании порекомендовать ввести плату за въезд в проблемные районы.
Идеальных моделей для оптимизации не бывает. Каждая модель ограничена своими предположениями и подвергается критике за то, что сводит действительность к простым уравнениям. «Простые модели могут оказаться бесценными, но при этом “неправильными” с точки зрения инженерии, – говорит Эпштейн. – Но от этой их неправильности – сплошная польза. Они – абстракции, которые многое помогают узнать». Однако главная задача применения моделей для подкрепления оптимизации – разработать структуру, позволяющую четко определять ограничения и компромиссы.
При всей своей ценности модели иногда сбивают с толку. Обычное для инженеров заблуждение – предполагать, что модель, успешно работающая на одном уровне, окажется такой же эффективной на другом. Это необязательно. В действительности эмерджентные свойства в сложных системах почти всегда зависят от изменения масштаба. Инженер-строитель Джон Купренас и архитектор Мэтью Фредерик убедились в этом благодаря астроному викторианской эпохи сэру Роберту Боллу:
Вымышленная команда инженеров попыталась создать «суперконя», который был бы в два раза выше обычной лошади. Но, сделав это, они обнаружили, что получившееся животное весьма проблемное и ущербное. Оно было вдвое выше, шире и длиннее и в результате весило в восемь раз больше обычного. Однако площадь поперечного сечения его вен и артерий оказалась лишь в четыре раза больше, чем у стандартного коня, из-за чего его сердцу приходилось работать в два раза интенсивнее. Площадь поверхности его копыт в четыре раза превышала площадь копыт обычной лошади, но у каждого копыта нагрузка на единицу площади была вдвое больше. В итоге сей болезненный экземпляр пришлось усыпить.
Модели – это вспомогательные системы, которые способствуют принятию решений, но сами окончательными решениями не являются. Проливая свет на плюсы и минусы, связанные с конечной целью, хорошие модели позволяют проверить реальное положение вещей при оптимизации. В случае с IBM главной целью была минимизация дорожных заторов в Стокгольме, которые, как оказалось, зависели от использования автомобилей в часы пик. Ограничения включали фиксированную пропускную способность дорог, бюджет местных органов власти и скрытые предпочтения людей. Вполне естественно, что отправной точкой для полного понимания и оптимизации такой сложной системы стало построение модели.
В начале 1940-х годов в Почтовом департаменте США разразился кризис. Во время Второй мировой войны многие почтовые работники ушли в армию. А годовой объем почты стремительно увеличивался (к 1950 году он достиг 45 млрд почтовых отправлений), в значительной степени благодаря бурному росту прямой почтовой рекламы за предыдущие 20 лет. Как же департамент мог оптимизировать доставку почты по всей стране?
Из-за сложностей, связанных с затратами, эффективностью, точностью, графиком доставки и, возможно, будущим самого учреждения, в Почтовом департаменте решили применить инженерный подход. Его результаты представляют немалый интерес, так как вошли в число величайших достижений нынешней почтовой системы США, а также принесли пользу всем странам мира.