Когда Риман начал заниматься простыми числами, нужно было доказать еще две гипотезы Гаусса. Во-первых, что функция π(Ν) может быть точно выражена Li(N) для любого N, то есть что разница между ними является бесконечно малой, таким образом, ее предел стремится к нулю. И во-вторых, что Li(N) > π(Ν) для любого значения Ν. Чтобы взяться за проблему, Риман ввел знаменитую дзета-функцию, которая определяется следующим образом:
где z — комплексное число, отличное от 1. У этой функции есть значения, в которых она равна нулю, такие как z = -2, z = -4 и другие, известные под названием тривиальных нулей. Нетривиальные нули — это те, для которых действительная часть строго больше нуля, но строго меньше 1. Вспомним, что комплексное число всегда имеет вид а + bi где а и b — действительные числа. Итак, для нетривиальных нулей справедливо 0 < а < 1.
Риман своим определением всего лишь обобщил функцию, изученную Эйлером, который обозначил ее так же:
Разница между дзета-функцией Римана и функцией Эйлера состоит в области определения. Для Эйлера х имеет действительное значение, в то время как у Римана z — комплексное число. Следовательно, функция Эйлера принимает действительные значения, в то время как функция Римана принимает комплексные значения.
Интерес математиков к этой бесконечной сумме, известной как ряд, происходит из мира музыки, и этот ряд появился раньше исследований Эйлера, хотя именно он изучил его наиболее глубоко и нашел связь с простыми числами. Пифагор заметил, что звук, издаваемый сосудом с водой, зависит от количества содержащейся в нем жидкости. Оказалось, что звуки гармоничны, если количество воды является частью от целого, дробью с числителем 1, то есть 1, 1/2, 1/3, 1/4, ... Пифагор назвал этот ряд гармоническим. Сумма гармонического ряда равноценна тому, что в дзета-функции Эйлера х взяли равным 1. Можно доказать, что сумма этого ряда бесконечна. На первый взгляд это очевидный результат, поскольку если мы сложим бесконечное количество положительных чисел, сумма будет расти и в конце концов примет бесконечное значение. Но дело в том, что это не так: для х = 2 ряд расходится. Действительно, Эйлер доказал, что значение
В истории математики не всегда было ясно, будет ли сумма бесконечного числа положительных членов обязательно равна бесконечности, и даже появились философские теории, посвященные этому.
Первый большой результат, связывающий дзета-функцию с простыми числами, был получен Эйлером в 1737 году. Он утверждает, что
где х — действительное число, а Р — множество простых чисел. В формуле сумма заменяется произведением дробей, образованных простыми числами. Чтобы дойти до этого результата,
Эйлер разложил каждый член ряда на произведение простых чисел. Например,
1/90 = 1/2 1/З² 1/5
Риман глубоко изучил функцию, введенную Эйлером, а также расширил сферу применения функции от действительных к комплексным числам.
Когда область определения расширяется до комплексных чисел, с функцией становится намного сложнее работать. Для начала, ее невозможно представить графически.
Зенон Элейский (ок. 490 — ок. 430 до н.э.) — древнегреческий философ, который создал ряд парадоксов, или апорий, чтобы поддержать учение своего учителя Парменида, утверждавшего, что ощущения, которые мы получаем о мире, иллюзорны. В частности, с помощью логических рассуждений Зенон пытался доказать, что физического движения не существует. Действующими лицами самого известного его парадокса являются легконогий Ахиллес и черепаха, соревнующиеся друг с другом. Поскольку воин бегал намного быстрее, он дал черепахе большую фору. После старта Ахиллес пробежал расстояние, которое разделяло соперников изначально, но по прибытии туда обнаружил, что черепахи там уже нет, она уже продвинулась вперед на небольшой кусок. Не падая духом, герой продолжил бег, но когда он пришел на то место, где была черепаха, та снова продвинулась. И так происходило до бесконечности. Таким образом, Ахиллес так и не догнал черепаху. Вывод очевиден: поскольку наши ощущения говорят нам, что Ахиллес догонит черепаху, значит, наши ощущения обманывают нас, и Парменид был прав. Однако рассуждение Зенона легко опровергается. Промежутки времени, за которое Ахиллес пробегает расстояние, отделяющее его отточки, в которой только что находилась черепаха, каждый раз все меньше, и их сумма дает конечный результат, так что человек догонит черепаху. Предположим, что Ахиллес дает черепахе изначальное преимущество в D и что воин бежит со скоростью, которая только вдвое больше скорости черепахи. Когда Ахиллес прибежит в то место, где была черепаха, животное преодолеет (1/2)D пути. Повторим рассуждение: когда Ахиллес проходит D + (1/2)D, черепаха продвигается еще на (1/4)D. Если представить это в математическом виде, то расстояние, которое должен пройти Ахиллес, чтобы догнать черепаху, задано суммой
D+D/2+D/4+D/8+...
Так что в худшем случае получается, что Ахиллес должен пробежать
но по результату Эйлера мы знаем, что сумма ряда конечна и на самом деле она равна π²/6, поэтому расстояние, которое должен пробежать Ахиллес, также конечно. Более того, расстояние, которое он пробегает до того, как догнать черепаху, — обозначим его через d — равно
d<=(1/2+π²/6) · D
Если мы выполним вычисления, получится, что d < 2,144 · D. Действительно, можно вычислить, что расстояние, которое пробегает Ахиллес, чтобы догнать черепаху, при его двойной скорости равно d = 2D.
Дзета-функция, которой пользовался Эйлер, — это действительная функция с действительным значением, то есть для действительного значения мы получаем результат, который также является действительным значением. Например, мы знаем, что
Благодаря этому можно изобразить функцию в виде графика на плоскости, которую математики обозначают R². Когда мы меняем область определения функции, то есть множество, в котором она принимает значения, на множество комплексных чисел, результат функции также становится комплексным числом. Если мы сочтем, как это сделал Эйлер, что комплексное число a + bi может быть представлено как пара (a, b) е R², и то же самое справедливо для ζ(α + bi), которое также является комплексным числом, то получается, что его графическое представление должно осуществляться в R4, то есть в пространстве из четырех измерений. Построение графиков в пространствах из четырех измерений нам недоступно, однако Риман смог вообразить эту функцию в четырех измерениях и понял, что существует связь между простыми числами и нетривиальными нулями функции, то есть теми, действительная часть которых лежит строго между 0 и 1.
Отмечая наступление нового тысячелетия, Институт Клэя выбрал семь математических задач, которые устояли перед всеми попытками их решения. Это было сделано в подражание Давиду Гильберту, который за 100 лет до этого определил перечень из 23 задач, ставших ориентиром для всех математиков XX века. Единственная задача, которая включена в оба списка, — это гипотеза Римана. Задачи тысячелетия охватывают самые важные области математики. Их перечень выглядит так.
1. Р относительно ΝΡ. Сформулирована Стивеном Куком в 1971 году. Возможно, это центральная проблема наук о вычислении. В основном математические проблемы сегодня классифицируются по классам Р и ΝΡ. Класс Р содержит все проблемы, которые могут быть решены с помощью алгоритма за полиномиальное время. Это означает, что число итераций ограничено многочленом, в котором переменная — «размер» проблемы. Эти проблемы решаемы с помощью компьютеров. Класс ΝΡ сформирован теми проблемами, для которых не существует алгоритмов в полиномиальном времени, но если у нас есть возможное решение проблемы из этого класса, то мы можем определить, хорошее оно или нет, за полиномиальное время. Из предыдущего определения следует, что любая проблема Р также является проблемой ΝΡ, тο есть любая проблема, решаемая в полиномиальном времени с помощью правильно подобранного алгоритма (Р), — это также проблема, которая допускает быструю проверку возможного решения (ΝΡ). Задача заключается в том, чтобы доказать (или опровергнуть), что любая проблема ΝΡ также является проблемой Р.