Формула имеет значение и в химии. Скажем, если бы мы взвесили молекулу двуокиси углерода и сравнили ее массу с массой углерода и кислорода, мы бы могли определить, сколько энергии высвобождается, когда углерод и кислород образуют углекислоту. Плохо только то, что эта разница масс так мала, что технически опыт очень трудно проделать.
Теперь обратимся к такому вопросу: нужно ли отныне добавлять к кинетической энергии m0c2 и говорить с этих пор, что полная энергия объекта равна mc2? Во-первых, если бы нам были видны составные части с массой покоя m0 внутри объекта M, то можно было бы говорить, что часть массы M есть механическая масса покоя составных частей, а другая часть — их кинетическая энергия, третья — потенциальная. Хотя в природе и на самом деле открыты различные частицы, с которыми происходят как раз такие реакции (реакции слияния в одну), однако никакими способами невозможно при этом разглядеть внутри M какие-то составные части. Например, распад K-мезона на два пиона происходит по закону (16.11), но бессмысленно считать, что он состоит из 2p, потому что он распадается порой и на Зp!
А поэтому возникает новая идея: нет нужды знать, как тела устроены изнутри; нельзя и не нужно разбираться в том, какую часть энергии внутри частицы можно считать энергией покоя тех частей, на которые она распадется. Неудобно, а порой и невозможно разбивать полную энергию mc2 тела на энергию покоя внутренних частей, их кинетическую и потенциальную энергии; вместо этого мы просто говорим о полной энергии частицы. Мы «сдвигаем начало отсчета» энергий, добавляя ко всему константу m0c2, и говорим, что полная энергия частицы равна ее массе движения, умноженной на с2, а когда тело остановится, его энергия есть его масса в покое, умноженная на с2.
И наконец, легко обнаружить, что скорость v, импульс Р и полная энергия Е довольно просто связаны между собой. Как это ни странно, формула m=m0/Ц(l-v2/c2) очень редко употребляется на практике. Вместо этого незаменимыми оказываются два соотношения, которые легко доказать:
Е2-P2c2=M02c4 (16.13)
и
Рс=Ev/c (16.14)
Глава 17
ПРОСТРАНСТВО - ВРЕМЯ
§ 1. Геометрия пространства-времени
§ 2. Пространственно-временные интервалы
§ 3. Прошедшее, настоящее, будущее
§ 4. Еще о четырехвекторах
§ 5. Алгебра четырехвекторов
§ 1. Геометрия пространства-времени
Теория относительности показывает, что связь между местоположением события и моментом, в какой оно происходит, при измерениях в двух разных системах отсчета совсем не такая, как можно было ожидать на основе наших интуитивных представлений. Очень важно ясно представить себе связь пространства и времени, возникающую из преобразований Лоренца. Поэтому мы глубже рассмотрим этот вопрос.
Координаты и время (х, y, z, t), измеренные «покоящимся» наблюдателем, преобразуются в координаты и время (х', y', z', t'), измеренные внутри «движущегося» со скоростью u космического корабля:
Давайте сравним эти уравнения с уравнением (11.5), которое тоже связывает измерения в двух системах, только одна из них теперь вращается относительно другой