Выбрать главу

Перейдем теперь к формулам и покажем, как кориолисова сила работает на практике. Пусть Мик сидит на карусели, ко­торая кажется ему неподвижной. С точки зрения Джо, который стоит на земле и знает истинные законы механики, карусель крутится. Предположим, что мы провели радиальную прямую на карусели и пусть Мик двигает прямо по этой линии какую-то массу. Я хочу показать, что для того, чтобы все было так, как мы описали, необходима боковая сила. Это можно увидеть, обратив внимание на момент количества движения вращающейся массы. Она крутится все время с одной и той же угловой ско­ростью w, поэтому ее момент количества движения равен

L=mvтавгr=mwr·г=mwг2.

Если масса расположена близко к центру, то он сравнительно мал, но если мы передвигаем ее в новое положение и если мы увеличиваем r, то масса m приобретает больший момент количества движения, т. е. во время движения по радиусу на нее должен действовать некоторый момент силы. (Чтобы на кару­сели двигаться по радиусу, нужно наклониться и толкаться вбок. Попробуйте как-нибудь сами проделать это.) Поскольку момент силы равен скорости изменения L во время движения массы m по радиусу, то

где через fk обозначена сила Кориолиса. В действительности мы хотели узнать, какую боковую силу должен прилагать Мик, чтобы двигать массу m со скоростью vr=dr/dt. Как видите, она равна FK=т/r=2mwvr.

Теперь, имея формулу для кориолисовой силы, давайте рас­смотрим несколько более подробно всю картину в целом. Как можно понять причину возникновения этой силы из элементар­ных соображений? Заметьте, что кориолисова сила не зависит от расстояния до оси и поэтому действует даже на оси! Оказывает­ся, что легче всего понять именно силу, действующую на оси вращения. Для этого нужно просто посмотреть на все происхо­дящее из инерциальной системы Джо, который стоит на земле. На фиг. 19.4 показаны три последовательных положения массы m, которая при t=0 проходит через ось.

Фиг. 19.4. Три последовательных положения движущейся по радиусу точки вращающегося столика.

Из-за вращения карусели масса, как мы видим, движется не по прямой линии, а по некоторому кривому пути, касающемуся диаметра в точке r=0. Но для того чтобы она двигалась по кривому пути, долж­на действовать ускоряющая сила. Это и есть кориолисова сила.

Однако с кориолисовой силой мы встречаемся не только в подобных ситуациях. Можно показать, что если предмет дви­жется с постоянной скоростью по краю диска, то на него тоже действует кориолисова сила. Почему? Мик видит предмет дви­жущимся со скоростью vм, а Джо видит его движущимся по окружности со скоростью vд=vм+wr, поскольку предмет вдо­бавок переносится каруселью. Как мы уже знаем, действующая в этом случае сила будет, в сущности, полностью центробежной силой скорости vд, равной тv2Д/r. Но, с точки зрения Мика, она должна состоять из трех частей. Все это можно записать в сле­дующем виде:

Итак, Fr это сила, которую измеряет Мик. Попытаемся по­нять, откуда что берется. Может ли Мик признать первый член? «Конечно,— сказал бы он,— даже если бы я не вращался, то та­кая центробежная сила должна возникнуть, если побежать по кругу со скоростью vм». Итак, это просто центробежная сила, появления которой Мик ожидает и которая не имеет ничего общего с вращением карусели. Вдобавок Мик думает, что долж­на быть еще одна центробежная сила, действующая даже на неподвижные предметы на его карусели. Это дает третий член. Однако в дополнение к ним существует еще один член — второй, который опять равен 2 mwvм. Раньше, при радиальной ско­рости, кориолисова сила fk была тангенциальна. Теперь же, при тангенциальной скорости, она радиальна. В самом деле, одно выражение отличается от другого только знаком. Сила всег­да имеет одно и то же направление по отношению к скорости независимо от того, куда направлена скорость. Она действует под прямым углом к скорости и равна по величине 2mwv.