Выбрать главу

Фиг. 40.5. Функция, распределения скоростей.

Заштрихованная площадь равна f(u)du это относи­тельное число частиц, ско­рости которых заключены внутри отрезка du около точки u.

Если опре­делить f(u) так, что относительное число молекул будет просто равно площади заштрихованного участка, то полная площадь под кривой — это все 100% молекул, т. е.

Теперь остается только найти это распределение, сравнив его с результатом доказанной ранее теоремы. Сначала надо выяснить, как выразить через f(u) число молекул, проходящих за 1 сек через заданную площадку со скоростью, превышаю­щей u?

Это число не равно интегралу (хотя это первое, что приходит в голову), ведь нас интересует число молекул, про­ходящих через площадку за секунду. Более быстрые молекулы будут пересекать площадку, так сказать, чаще, чем более мед­ленные, поэтому, чтобы найти число проходящих молекул, надо умножить плотность молекул на скорость. (Мы уже обсуждали это в предыдущей главе, когда подсчитывали число столкновений.)

Полное число молекул, проходящих через поверхность за время t, равно числу молекул, способных достигнуть поверхности, а это молекулы, проходящие к поверхности с расстояния ut. Таким образом, число молекул, достигающих площадки, определяется не просто числом молекул, движущихся с дан­ной скоростью, а равно этому числу, отнесенному к единице объема, и умноженному на расстояние, которое они пройдут, прежде чем достигнут площадки, сквозь которую они, по-ви­димому, должны пройти, а это расстояние пропорционально и. Значит, нам предстоит вычислить интеграл от произведения и на f(u)du, взятый от и до бесконечности, причем мы уже зна­ем, что этот интеграл обязательно должен быть пропорционален ехр(-mu2/2kT), а постоянную пропорциональности еще надо определить:

Если теперь продифференцировать интеграл по и, то мы получим подынтегральное выражение (со знаком минус, по­тому что и — это нижний предел интегрирования), а диффе­ренцируя правую часть равенства, мы получим произведение и на экспоненту (и на некоторую постоянную). Сократим в обеих частях и, и тогда

Мы оставили в обеих частях равенства du, чтобы помнить, что это распределение; оно говорит нам об относительном числе молекул, имеющих скорость между u и u+du.

Постоянная С должна определиться из условия равенства интеграла единице в согласии с уравнением (40.5). Можно доказать, что

Используя это обстоятельство, легко найти С=Ц(m/2pkT).

Поскольку скорость и импульс пропорциональны, можно утверждать, что распределение молекул по импульсам, отне­сенное к единице импульсной шкалы, также пропорционально ехр(-к.э./kT). Оказывается, что эта теорема верна также в теории относительности, если только формулировать ее в тер­минах импульсов, тогда как в терминах скоростей это уже не так; поэтому сформулируем все в терминах импульсов:

f(p)dp=ce-к.э./kTdp. (40.8)

Это значит, что мы установили, что вероятности, определяе­мые энергиями разного происхождения (и кинетической и по­тенциальной), в обоих случаях выражаются одинаково: ехр(-энергия/kT); таким образом, наша замечательная теорема приобрела форму, весьма удобную для запоминания.

Однако пока мы говорили только о «вертикальном» распре­делении скоростей. Но мы можем спросить, какова вероятность того, что молекула движется в другую сторону? Конечно, эти распределения связаны друг с другом и можно получить пол­ное распределение, исходя из какого-то одного, ведь полное распределение зависит только от квадрата величины скорости, а не от ее z-составляющей. Распределение по скоростям не должно зависеть от направления и определяться только функ­цией u2 — вероятностью величины скорости. Нам известно распределение z-составляющей, и мы хотим получить отсюда распределение других составляющих. В результате полное распределение по-прежнему пропорционально ехр(-к.э./kT), только теперь кинетическая энергия состоит из трех частей: mv2x/2, mv2y/2 и mv2z/2, суммируемых в показателе экспоненты. А можно записать это и в виде произведения:

f(vx,, vy, vz) dvx dvy dvz~

Вы можете убедиться в том, что эта формула верна, ибо, во-первых, распределение зависит только от v2 и, во-вторых, ве­роятности данных vгполучаются после интегрирования по всем vxи vyи это должно привести к (40.7). Но обоим этим тре­бованиям удовлетворяет только функция (40.9).

§ 5. Удельные теплоемкости газов

Посмотрим теперь, как можно проверить теорию и оценить, насколько хороша классическая теория газов. Мы уже гово­рили, что если U—внутренняя энергия N молекул, то фор­мула pV=NkT=(g-1)U иногда и для некоторых газов может оказаться правильной. Мы знаем, что для одноатомного газа правая часть равна 2/3 кинетической энергии движения цен­тров масс атомов. В случае одноатомного газа кинетическая энергия равна внутренней энергии, поэтому g-1 == 2/з.

Но предположим, что мы столкнулись с более сложной молекулой, которая может вращаться и колебаться, и пред­положим (в классической механике это так), что энергии внут­ренних движений также пропорциональны kT. Поэтому при заданной температуре молекула, кроме кинетической энергии kT, имеет внутреннюю энергию колебания и вращения. Тогда полная энергия U включает не только кинетическую энергию, но и вра­щательную энергию и мы получаем другие значения у. Наилуч­ший способ измерения gэто измерение удельной теплоемкости, характеризующей изменение энергии при изменении темпера­туры. К этому способу мы еще вернемся, а пока предполо­жим, что нам удалось экспериментально определить g с по­мощью кривой PVg , соответствующей адиабатическому сжатию.

Попробуем вычислить g для ряда частных случаев. Прежде всего для одноатомных газов полная энергия U есть не что иное, как кинетическая энергия, и в этом случае, как мы уже знаем, g равно 5/3. В качестве примера двухатомных газов рассмотрим кислород, водород, пары иода и т. д. и предположим, что двух­атомный газ можно представить как собрание пар атомов, меж­ду которыми действуют силы, похожие на те, что изображены на фиг. 40.3. Можно также предположить, и оказывается, что это вполне законно, что при температурах; обычных для диатомных газов, пары атомов стремятся удалиться друг от друга на расстояние r0 (расстояние минимума потенциальной энергии). Если бы это было не так, и вероятность не очень сильно за­висела от удаления от равновесной конфигурации, то мы обна­ружили бы, что кислород есть смесь сравнимых количеств O2 и одиночных атомов кислорода. А мы знаем, что в кислороде при­сутствует очень мало одиночных атомов кислорода, а это озна­чает, что глубина потенциальной ямы значительно больше kT, и это как раз мы и предполагали. Но раз атомы, составляющие молекулу, прочно закреплены на расстоянии r0, то нам понадо­бится лишь часть потенциальной кривой вблизи минимума, которую в этом случае можно приближенно заменить параболой. Параболический потенциал соответствует гармоническому ос­циллятору, и, в самом деле, отличной моделью молекулы кисло­рода могут служить два соединенных пружинкой атома.