Вариация S теперь приобрела такой вид, какой мы хотели ей придать: что-то стоит в скобках (обозначим его F), и все это умножено на h(t) и проинтегрировано от t1 до t2.
У нас вышло, что интеграл от какого-то выражения, умноженного на h(t), всегда равен нулю:
Стоит какая-то функция от t; умножаю ее на h(t) и интегрирую ее от начала до конца. И какова бы ни была h, я получаю нуль. Это означает, что функция F(t) равна нулю. В общем-то это очевидно, но я на всякий случай покажу вам один из способов доказательства.
Пусть в качестве h (t) я выберу нечто, что равно нулю всюду, при всех t, кроме одного, заранее выбранного значения t. Оно
остается нулем, пока я не
дойду до этого t,
затем оно подскакивает на мгновение и сразу же осаживает назад. Если вы берете интеграл от этой h, умноженной на какую-то функцию F, то единственное место, в котором вы получите что-то ненулевое,— это там, где h (t) подскакивало; и у вас получится значение F в этом месте на интеграл по скачку. Сам по себе интеграл по скачку не равен нулю, но после умножения на F он должен дать нуль. Значит, функция в том месте, где был скачок, должна оказаться нулем. Но ведь скачок можно было сделать в любом месте; значит, F должна быть нулем всюду.
Мы видим, что если наш интеграл равен нулю при какой угодно h, то коэффициент при h должен обратиться в нуль. Интеграл действия достигает минимума на том пути, который будет удовлетворять такому сложному дифференциальному уравнению:
На самом деле оно не так уж сложно; вы его уже встречали прежде. Это просто F=ma. Первый член — это масса, умноженная на ускорение; второй — это производная от потенциальной энергии, т. е. сила.
Итак, мы показали (по крайней мере для консервативной системы), что принцип наименьшего действия приводит к правильному ответу; он утверждает, что путь, "обладающий минимумом действия,— это путь, удовлетворяющий закону Ньютона.
Нужно сделать еще одно замечание. Я не доказал, что это минимум. Может быть, это максимум. На самом деле это и не обязательно должен быть минимум. Здесь все так же, как в «принципе кратчайшего времени», который мы обсуждали, изучая оптику. Там тоже мы сперва говорили о «кратчайшем» времени. Однако выяснилось, что бывают положения, в которых это время не обязательно «кратчайшее». Фундаментальный принцип заключается в том, чтобы для любых отклонений первого порядка от оптического пути изменения во времени были бы равны нулю; здесь та же самая история. Под «минимумом» мы на самом деде подразумеваем, что в первом порядке малости изменения величины S при отклонениях от пути должны быть равны нулю. И это не обязательно «минимум».
Теперь я хочу перейти к некоторым обобщениям. В первую очередь всю эту историю можно было бы проделать и в трех измерениях. Вместо простого x я тогда имел бы x, у и z как функции t, и действие выглядело бы посложнее. При трехмерном движении вы должны использовать полную кинетическую энергию: (m/2), умноженное на квадрат всей скорости. Иначе говоря
Кроме того, потенциальная энергия теперь является функцией x, у и z. А что можно сказать о пути? Путь есть некоторая кривая общего вида в пространстве; ее не так легко начертить, но идея остается прежней. А как обстоит дело с h? Что ж, и h имеет три компоненты. Путь можно сдвигать и по x, и по у, и по z, или во всех трех направлениях одновременно. Так что h теперь вектор. От этого сильных усложнений не получается. Раз нулю должны быть равны лишь вариации первого порядка, то можно провести расчет последовательно с тремя сдвигами. Сперва можно сдвинуть h только в направлении x и сказать, что коэффициент должен обратиться в нуль. Получится одно уравнение. Потом мы сдвинем h в направлении у и получим второе. Затем сдвинем в направлении z и получим третье. Можно все, если угодно, проделать в другом порядке. Как бы то ни было, возникает тройка уравнений. Но ведь закон Ньютона — это тоже три уравнения в трех измерениях, по одному для каждой компоненты. Вам предоставляется самим убедиться, что это все действует и в трех измерениях (работы здесь не так много). Между прочим, можно взять какую угодно систему координат, полярную, любую, и сразу получить законы Ньютона применительно к этой системе, рассматривая, что получится, когда произойдет сдвиг h вдоль радиуса или по углу, и т. д.