Глава 21
РЕШЕНИЯ УРАВНЕНИЙ МАКСВЕЛЛА С ТОКАМИ И ЗАРЯДАМИ
§ 1. Свет и электромагнитные волны
§ 2. Сферические волны от точечного источника
§ 3. Общее решение уравнений Максвелла
§ 4. Поля колеблющегося диполя
§ 5. Потенциалы движущегося заряда; общее решение Льенара и
Вихерта
§ 6. Потенциалы заряда, движущегося с постоянной скоростью;
формула Лоренца
Повторить: гл. 28 (вып. 3) «Электромагнитное излучение»; гл. 31 (вып. 3)
«Как возникает показатель преломления»; гл. 34 (вып. 3)
«Релятивистские явления в излучении»
§ 1. Свет и электромагнитные волны
В предыдущей главе мы видели, что среди решений уравнений Максвелла есть электромагнитные волны. Свету, радио, рентгеновским лучам и т. д. отвечают электромагнитные волны отличающиеся только длиной волны. Мы уже подробно изучали различные явления, связанные со светом. В этой главе мы хотим связать оба вопроса и показать, что уравнения Максвелла действительно могли служить основой для изучения свойств света.
Наше изучение света мы начали с того, что выписали уравнение для электрического поля, создаваемого зарядом, который мог как-то произвольно двигаться. Уравнение имело вид
[см. гл. 28 (вып. 3), выражение (28.3)].
Если заряд движется произвольным образом, то электрическое поле, которое существует в некоторой точке, в настоящий момент зависит только от положения и движения заряда в более ранний момент времени, отстающий на интервал, необходимый для того, чтобы свет, двигаясь со скоростью с, прошел расстояние r' от заряда до точки поля. Иными словами, если вам нужно знать электрическое поле в точке (1) в момент t, вы должны подсчитать положение (2') заряда и его движение в момент (t-r'1с} [где r' — расстояние до точки (1)] из положения заряда (2') в момент (t—r/с).
Фиг. 21.1. Поля в точке (1) в момент t зависят от того положения (2'), которое заряд q занимал в момент (t — r'/с).
Штрихи здесь напоминают вам, что r' — это так называемое «запаздывающее расстояние» от точки (2') к точке (1), а вовсе не теперешнее расстояние между точкой (2) — положением заряда в момент t — и точкой поля (1) (фиг. 21.1). Заметьте, что сейчас по-иному определяется направление единичного вектора еr. В гл. 28 и 34 (вып. 3) мы уславливались, что r (и, стало быть, еr) будет показывать на источник. Теперь же мы следуем определению, используемому в формулировке закона Кулона, по которому r направлено от заряда [в точке (2)] к точке (1) поля. Единственное отличие в том, что новое r (и еr) противоположно старому.
Мы видели также, что если скорость заряда v всегда много меньше с и если рассматриваются только точки, сильно удаленные от заряда, так что в (21.1) существенно лишь последнее слагаемое, то поля можно также записать в виде
и
Рассмотрим более детально, что дает полное уравнение (21.1). Вектор еr — это единичный вектор, направленный от «запаздывающей» точки (2') к точке (1). Тогда первое слагаемое дает то, чего следовало бы ожидать, если бы заряд в своем «запаздывающем» положении создавал кулоново поле,— это можно назвать «запаздывающим кулоновым полем». Электрическое поле обратно пропорционально квадрату расстояния и направлено от «запаздывающего» положения заряда (т. е. по вектору еr').
Но это только первое слагаемое. Остальные напоминают нам, что законы электричества не утверждают, что все поля, оставаясь, как и были, статическими, начинают просто запаздывать (а такое утверждение порой приходится слышать). К «запаздывающему кулонову полю» надо добавить два других слагаемых.