Неопределенный интеграл есть возвращение функции к самой себе из недр своего становящегося инобытия, но возвращение пока лишь чисто структурное, пока еще лишенное абсолютно–количественной определенности. Определенный интеграл есть это же возвращение, но уже не просто в смысле структуры, а еще и, кроме того, в смысле количественном; для самопроявлений находимой структуры функции положены четкие количественные пределы. Далее—какая возможна еще дальнейшая интенсификация интегральной определенности, или, другими словами, интенсификация самой интегральности? В определенном интеграле дана определенность границ, очертания. Что может диалектически противостоять этой определенности? Конечно, — определенность того, что содержится внутри границ, внутри очерченных пределов. Это и будет инобытием той определенности, которую содержит в себе определенный интеграл. Такая определенность будет, конечно, зависеть не просто от предельных точек значения аргумента х, но, главным образом, от поведения самой производной, и притом поведения не производной как производной (это имеется в виду уже во всяком неопределенном интеграле), но производной в ее переплетении с другими моментами, дающими ей ту или другую инобытийную определенность и тем самым вносящими эту определенность в недра самого интеграла. Таким образом достигается определенность интеграла внутри его собственных границ; и если определенный интеграл возникает как определенность его количественных границ, то интегрированное дифференциальное уравнение возникает как определенность интеграла внутри тех границ, с появлением которых тоже дается сам определенный интеграл. Ясно, что обе дисциплины интегрального исчисления — теория определенных интегралов и интегрирование дифференциальных уравнений — находятся в четком диалектическом взаимоотрицании.
Возникает вопрос: где же синтез этих двух видов интегральной определенности? Теория определенных интегралов дает определение границ, внешнего очертания, контура интеграла, и притом — в чисто количественном смысле. Интегрирование дифференциальных уравнений дает для интеграла определенность внутреннюю, возникающую как результат инобытийной определенности производной. В первом случае изменяется аргумент в определенных пределах, и за ним пассивно следует функция. Во втором случае не только меняется χ, но самостоятельность проявляет и сама функция, поскольку она берется не только в своей зависимости от аргумента, но и в своей внеаргументной определенности, зафиксированной «в структуре дифференциального уравнения. Значит, должен возникнуть диалектический синтез двух интегральных опре–деленностей, синтез внешнеколичественный (в смысле пределов, границ) и внутреннеструктурный (в смысле определенной заполненности упомянутых пределов). Этот синтез и дан в той науке, которую в общем виде можно назвать функциональным исчислением и которая более известна в своем частном виде под именем вариационного исчисления.
Сущность вариационного исчисления базируется на расширении самого понятия функции. Сейчас мы укажем, почему в этом и надо искать формулированный только что диалектический синтез двух интегральных определенностей.
Обычно в анализе мы имеем аргумент jc и зависящую от него функцию у. Меняется x, меняется и зависящая от него функция. Можно, однако, под аргументом понимать не просто х, а целую функцию и говорить, таким образом, о зависимости функции от функции. В сущности, и здесь нет ничего нового по сравнению с тем же дифференциальным исчислением, где можно найти сколько угодно зависимостей функции и где дается определенное правило дифференцирования таких «сложных» функций. И не в этом специ–фикум функционального и вариационного исчисления. Здесь имеется в виду не просто зависимость функции от функции, т. е. зависимость функции от количественного значения функции, но тут — зависимость функции от изменения вида функции, от последовательной деформации самой структуры функции. Роль аргумента принимает здесь на себя самый вид функции. Изменяется вид, структура функции, и—соответственно—меняется количествен–ное значение функции, а отсюда—соответственно—возникает то или иное значение интеграла.
Когда в диалектике возникает вопрос о синтезировании границы и ограниченного, всегда ищется категория, которая бы сразу дала и охватила как границу, так и ограниченное, чтобы оба эти начала превратились в нечто цельное, неделимое и даже неразличимое. В определенном интеграле дана определенность границ интеграла в связи с определенностью области изменения аргумента. В интегрировании дифференциального уравнения дана определенность содержания интеграла в связи с определенным содержанием изменения функции. Оба эти взаимопротивоположные момента — граница и содержание—даны количественно, хотя уже в содержании, как в том, что противоположно границе, уже содержится качественный момент, предполагающийся, но не использованный как чистая качественность, а использованный пока только количественно. Стало быть, синтез теории определенных интегралов и интегрирования дифференциальных уравнений есть в сущности синтез формы и содержания, предела и определяемого, границы и ограничиваемого.