Выбрать главу

Вместо этого путь вперед требует широкого общественного ответа, координации действий компаний, правительств, исследователей и гражданского общества. Нам нужны согласованные нормы и стандарты этического развития и использования ИИ, сформированные в рамках всеохватывающего процесса, в котором участвуют разные стороны. Компании должны сделать такие принципы, как прозрачность, подотчетность и человеческий надзор, центральными в своих технологиях. Исследователи нуждаются в поддержке и стимулах, чтобы приоритет отдавался полезному ИИ, а не простому увеличению возможностей . А правительствам необходимо принять разумные нормативные акты, чтобы общественные интересы превалировали над мотивом прибыли.

Самое главное, что общественность нуждается в просвещении по вопросам ИИ, чтобы она, будучи информированными гражданами, могла влиять на будущее. Сегодняшние решения о том, как ИИ отражает человеческие ценности и повышает человеческий потенциал, будут отражаться на поколениях. Это не та проблема, которую можно решить в лаборатории - она требует от общества осмысления того, как технология формирует человеческое состояние и какое будущее мы хотим создать. И этот процесс должен произойти как можно скорее.

 

3. ЧЕТЫРЕ ПРАВИЛА СОВМЕСТНОЙ РАЗВЕДКИ

Дело в том, что мы живем в мире, где есть ИИ, а значит, нам нужно понимать, как с ними работать. Поэтому нам нужно установить некоторые основные правила. Поскольку ИИ, доступный вам при чтении этой книги, скорее всего, отличается от того, который был у меня при ее написании, я хочу рассмотреть общие принципы. Мы сосредоточимся на вещах, присущих всем современным системам генеративного ИИ, основанным на больших языковых моделях, и не подверженных влиянию времени, насколько это возможно.

Вот мои четыре принципа работы с искусственным интеллектом:

Принцип 1: Всегда приглашайте ИИ за стол переговоров.

Попробуйте пригласить ИИ на помощь во всем, что вы делаете, несмотря на юридические или этические препятствия. Экспериментируя, вы можете обнаружить, что помощь ИИ может быть приятной, или разочаровывающей, или бесполезной, или нервирующей. Но вы делаете это не только ради помощи; знакомство с возможностями ИИ позволит вам лучше понять, как он может помочь вам - или угрожать вам и вашей работе. Учитывая, что ИИ - это технология общего назначения, не существует единого руководства или инструкции, к которой вы могли бы обратиться, чтобы понять его ценность и пределы.

Все это усложняет феномен, который я и мои соавторы называем "Зазубренной границей ИИ". Представьте себе крепостную стену, одни башни и бойницы которой выходят на сельскую местность, а другие сворачивают к центру замка. Эта стена - возможности ИИ, и чем дальше от центра, тем сложнее задача. Все, что находится внутри стены, может сделать ИИ; все, что за ее пределами, ИИ сделать сложно. Проблема в том, что стена невидима, поэтому некоторые задачи, которые логически могут казаться одинаково удаленными от центра и, следовательно, одинаково трудными - например, написание сонета и стихотворения из пятидесяти слов - на самом деле находятся по разные стороны стены. ИИ отлично справляется с сонетом, но из-за того, что он воспринимает мир в виде лексем, а не слов, он постоянно выдает стихи, состоящие из большего или меньшего количества слов, чем пятьдесят. Аналогично, некоторые неожиданные задачи (например, генерация идей) легко даются ИИ, в то время как другие задачи, которые кажутся машинам простыми (например, базовая математика), являются проблемами для LLM. Чтобы определить форму границы, вам придется поэкспериментировать.

И эти эксперименты дают вам шанс стать лучшим в мире экспертом по использованию ИИ в хорошо знакомой вам задаче. Причина этого кроется в фундаментальной истине об инновациях: они дороги для организаций и компаний, но дешевы для отдельных людей, выполняющих свою работу. Инновации появляются в результате проб и ошибок, а это значит, что организации, пытающейся выпустить новый продукт, помогающий маркетологу писать более убедительные тексты, придется создать продукт, протестировать его на многих пользователях и много раз внести изменения, чтобы сделать что-то работающее. Маркетолог же пишет текст постоянно и может экспериментировать с различными способами использования ИИ, пока не найдет тот, который принесет успех. Не нужно нанимать команду или использовать дорогостоящие циклы разработки программного обеспечения.