Выбрать главу

Современный ИИ не может реализовать всю эту концепцию. Он не способен связывать сложные концепции и по-прежнему слишком часто галлюцинирует. Тем не менее, в ходе экспериментов в Уортоне мы обнаружили, что современный искусственный интеллект в ограниченных масштабах может быть довольно впечатляющим тренером, предлагая своевременное поощрение, обучение и другие элементы целенаправленной практики. Например, мы создали симулятор с использованием ИИ, чтобы научить людей подавать свои идеи. Сначала пользователи получают инструкцию и возможность задать ИИ вопросы о том, что они узнали (при этом ИИ предлагается дать совет по подаче идей так, как это делаю я на своих занятиях). Затем они переходят к практической сессии, где по другой подсказке ИИ имитирует венчурного капиталиста, который проверяет их подачу и идею. Все это время другой экземпляр того же ИИ собирает данные об их работе, включая секретные "заметки", которые вели предыдущие ИИ. В конце практической сессии этот ИИ оценивает их работу, а затем передает их последнему ИИ, которому поручено выступить в роли наставника. Это финальное взаимодействие помогает им осмыслить полученные знания и побуждает их попробовать еще раз. Хотя нам пришлось импровизировать, чтобы обойти слабые места современных моделей ИИ с помощью этой сложной системы, такие как отсутствие памяти, в будущем мы можем ожидать, что ИИ будет справляться со всеми этими ролями естественным образом. Это может стать большим толчком к приобретению опыта.

Когда каждый является экспертом

Я уже приводил аргументы в пользу того, что экспертность будет иметь большее значение, чем раньше, потому что эксперты смогут получить максимум от коллег ИИ и, скорее всего, смогут проверять факты и исправлять ошибки ИИ. Но даже при целенаправленной практике не каждый сможет стать экспертом во всем. Талант тоже играет свою роль. Как бы мне ни хотелось стать художником мирового класса или звездой футбола, я никогда им не стану, сколько бы ни тренировался. На самом деле, для самых элитных спортсменов целенаправленная практика объясняет лишь 1 процент их отличий от обычных игроков - все остальное - это генетика, психология, воспитание и удача.

И это относится не только к спортсменам. В Кремниевой долине рассказывают истории о "10-кратном инженере". То есть высокопроизводительный инженер-программист в 10 раз лучше среднего. На самом деле эта тема неоднократно изучалась, хотя большинство из этих исследований довольно старые. Но эти эксперименты обнаружили еще больший эффект, чем 10-кратный. Разрыв между программистами из 75-го процентиля и 25-го процентиля может достигать 27 раз по некоторым параметрам качества программирования. Добавьте это к моему собственному исследованию , посвященному работе, которую многие люди считают невероятно скучной и шаблонной - менеджменту среднего звена. Изучая индустрию видеоигр, я обнаружил, что качество менеджера среднего звена, курирующего игру, объясняет более пятой части доходов игры в конечном итоге. Это влияние было больше, чем влияние всей команды менеджеров высшего звена, и больше, чем влияние дизайнеров, которые придумывали креативные идеи для самой игры.

Если вы сможете найти, обучить и удержать этих лучших работников, вы получите огромные преимущества. Большая часть обучения и работы направлена на то, чтобы довести людей до такого высококвалифицированного состояния. Однако люди, хорошо владеющие одним навыком, могут быть не очень хороши в другом. Современная профессиональная деятельность состоит из широкого спектра действий, а не из одной специализации. Например, работа врача может включать в себя множество задач, таких как диагностика пациентов, лечение, консультирование, заполнение отчетов о расходах и контроль за персоналом офиса. Маловероятно, что какой-либо врач одинаково хорошо справляется со всеми этими задачами. Даже у самых лучших работников есть слабые места, поэтому они должны быть частью больших организаций, чтобы иметь возможность сосредоточиться на своей области знаний.