Выбрать главу

Общая выработка энергии — метаболическая активность клетки — может изменяться в соответствии с требованиями межнейронных взаимодействий (рис. 32). Нейрон может повышать свою способность к синтезу и транспортировке специфических молекул в периоды усиленной деятельности. Точно так же при малой функциональной нагрузке нейрон может снизить уровень активности. Эта способность к регуляции фундаментальных внутриклеточных процессов позволяет нейрону гибко приспосабливаться к самым различным уровням активности.

Генетическая детерминация основных типов нейронных сетей

Для того чтобы мозг нормально функционировал, потоки нервных сигналов должны находить надлежащие маршруты среди клеток различных функциональных систем и межрегиональных объединений. В главе 1 мы получили некоторые элементарные сведения о сложном процессе построения и развития мозга. Однако до сих пор остается загадкой, каким образом аксоны и дендрита той или иной нервной клетки растут именно в том направлении, чтобы создавались специфические связи, необходимые для ее функционирования. Между тем тот факт, что конкретные молекулярные механизмы, лежащие в основе многих процессов онтогенеза, еще не раскрыты, не должен заслонять от нас другого, еще более поразительного факта-того, что из поколения в поколение в мозгу развивающихся животных действительно устанавливаются нужные связи. Исследования в области сравнительной нейроанатомии говорят о том, что по фундаментальному плану строения мозг очень мало изменился в процессе эволюции. Нейроны специализированного зрительного рецепторного органа — сетчатки — всегда соединяются с вторичными нейронами зрительной, а не слуховой или осязательной системы. В то же время первичные слуховые нейроны из специализированного органа слуха — улитки — всегда идут к вторичным нейронам слуховой системы, а не зрительной или обонятельной. Точно такая же специфичность связей характерна для любой системы мозга.

Высокая специфичность структуры мозга имеет важное значение. Общий диапазон связей для большинства нервных клеток, по-видимому, предопределен заранее, причем эта предопределенность касается тех клеточных свойств, которые ученые считают генетически контролируемыми. Набор генов, предназначенных для проявления в развивающейся нервной клетке, каким-то еще до конца не установленным образом определяет как будущий тип каждой нервной клетки, так и принадлежность ее к той или иной сети. Концепция генетической детерминированности приложима и ко всем остальным особенностям данного нейрона -например к используемому им медиатору, к размерам и форме клетки. Как внутриклеточные процессы, так и межнейронные взаимодействия определяются генетической специализацией клетки.

Три генетически детерминированных типа нервных сетей

Чтобы сделать концепцию генетической детерминации нейронных сетей более понятной, давайте уменьшим их число и представим себе, что наша нервная система состоит всего лишь из 9 клеток (см. рис. 33). Это абсурдное упрощение поможет нам увидеть сети трех основных типов, которые встречаются повсюду, — иерархические, локальные и дивергентные с одним входом. Хотя число элементов в сетях может быть различным, выделенные три типа могут служить основой для построения надежной классификационной схемы.

Иерархические сети. Наиболее распространенный тип межнейронных связей можно увидеть в главных сенсорных и двигательных путях. В сенсорных системах иерархическая организация носит восходящий характер; в нее включаются различные клеточные уровни, по которым информация поступает в высшие центры — от первичных рецепторов к вторичным вставочным нейронам, затем к третичным и т.д. Двигательные системы организованы по принципу нисходящей иерархии, где команды «спускаются» от нервной системы к мышцам: клетки, расположенные, фигурально говоря, «наверху», передают информацию специфическим моторным клеткам спинного мозга, а те в свою очередь — определенным группам мышечных клеток.

Иерархические системы обеспечивают очень точную передачу информации. В результате конвергенции (от лат converge — сходиться к одному центру) — когда несколько нейронов одного уровня контактируют с меньшим числом нейронов следующего уровня, или дивергенции (от лат. divergo — отклоняюсь, отхожу) — когда контакты устанавливаются с большим числом клеток следующего уровня, информация фильтруется и происходит усиление сигналов. Но, подобно любой цепи, иерархическая система не может быть сильнее своего самого слабого звена. Любая инактивация  (от лат. in- — приставка, означающая отрицание) любого уровня, вызванная ранением, заболеванием, инсультом или опухолью, может вывести из строя всю систему. Конвергенция и дивергенция, однако, оставляют цепям некоторый шанс уцелеть даже при их серьезном повреждении, Если нейроны одного уровня будут частично уничтожены, сохранившиеся клетки смогут все-таки поддерживать функционирование сети.