Выбрать главу

Наряду с твердостью, известно еще одно достоинство осмия — тугоплавкость. По температуре плавления (около 3000 °C) он превзошел не только своих благородных собратьев — платиноидов, но и подавляющее большинство остальных металлов. Благодаря своей тугоплавкости осмий попал в биографию электрической лампочки: еще в те времена, когда электричество доказывало свое преимущество перед другим источником света — газом, немецкий ученый К. Ауэр фон Вельсбах предложил заменить в лампе накаливания угольный волосок осмиевым. Лампы стали потреблять в три раза меньше энергии и давали приятный, ровный свет. Но на этом ответственном посту осмий долго не продержался: сначала его сменил менее дефицитный тантал, однако вскоре и тот вынужден был уступить место самому тугоплавкому из тугоплавких — вольфраму, который по сей день несет свою огненную вахту.

Нечто подобное произошло с осмием и в другой сфере его применения-в производстве аммиака. Современный способ синтеза этого соединения, предложенный еще в 1908 году известным немецким химиком Фрицем Габером. немыслим без участия катализаторов. Первые катализаторы, которые использовались для этой цели, проявляли свои способности лишь при высоких температурах (выше 700 °C), да к тому же они были не очень эффективны. Попытки найти им замену долго ни к чему не приводили. Новое слово в совершенствовании этого процесса сказали ученые лаборатории Высшей технической школы в Карлсруэ: они предложили применять в качестве катализатора тонкораспыленный осмий. (Кстати, будучи весьма твердым, осмий в то же время очень хрупок, поэтому губку этого металла можно без больших усилий раздробить и превратить в порошок.) Промышленные опыты показали, что игра стоит свеч: температуру процесса удалось снизить более чем на 100 градусов, да и выход готовой продукции заметно возрос.

Несмотря на то что в дальнейшем осмию пришлось и здесь сойти со сцены (сейчас, например, для синтеза аммиака используют недорогие, но эффективные железные катализаторы), можно считать, что именно он сдвинул важную проблему с мертвой точки. Каталитическую деятельность осмий продолжает и в наши дни: применение его в реакциях гидрогенизации органических веществ дает отличные результаты. Этим в первую очередь обусловлен большой спрос на осмий со стороны химиков: на химические нужды расходуется почти половина его мировой добычи.

Элемент № 76 представляет немалый интерес и как объект научных исследований. Природный осмий состоит из семи стабильных изотопов с массовыми числами 184, 186–190 и 192. Любопытно, что чем меньше массовое число изотопа этого элемента, тем менее он распространен: если на долю самого тяжелого изотопа (осмия-192) приходится 41 %, то легчайший из семи «братьев» (осмий-184) располагает лишь 0,018 % общих «запасов». Поскольку изотопы отличаются друг от друга только массой атомов, а по своим физико-химическим «наклонностям» они весьма схожи между собой, то разделить их очень сложно. Именно поэтому даже «крохи» изотопов некоторых элементов стоят баснословно дорого: так, килограмм осмия-187 оценивается на мировом рынке в 14 миллионов долларов. Правда, в последнее время ученые научились «разлучать» изотопы с помощью лазерных лучей, и есть надежда, что вскоре цены на эти «товары неширокого потребления» будут заметно снижены.

Подобно другим платиновым металлам, осмий проявляет несколько валентностей. Наиболее часто встречаются соединения, где осмий четырех- и шестивалентен, однако при взаимодействии с кислородом он обычно «пускает в ход» все восемь своих валентных связей.

Из соединений осмия наибольшее практическое значение имеет его четырехокись (да-да, та самая, которой элемент так «обязан» своим названием). В роли катализатора она выступает при синтезе некоторых лекарственных препаратов. В медицине и биологии ее используют как окрашивающее средство при микроскопическом исследовании животных и растительных тканей. Следует помнить, что безобидные на вид бледно-желтые кристаллы четырехокиси осмия — сильный яд, раздражающий кожу и слизистые оболочки, вредно действующий на глаза.