Основным потребителем железа к концу XVIII в. стали дороги, названные его именем. День рождения железной дороги — 14 июля 1830 г., когда на конкурсе паровозов в Англии победила «Ракета», построенная Дж. Стивенсоном. «Она летала, как ветер», — говорили лондонцы. «Ракета» развивала скорость около 30 км/ч.
Минералургия железа
Железо входит в состав более чем 300 минералов, занимая 4,65 % массы земной коры. Оно накапливается в магме и осадках, образуя различные виды месторождений с содержанием железа до 50–60 %. Это оно придает красный, бурый и желтый цвет горным породам, глинам, пескам.
Однако промышленных минералов железа всего несколько. Главный из них — магнетит, магнитный железняк (Fe2O3 * FeO), смесь оксидов двух- и трехвалентного железа. Месторождения магнетита известны во многих странах мира. В СССР наиболее крупные — Уральские, Курская магнитная аномалия, Криворожские и другие, благодаря им наша страна занимает первое место в мире по запасам железных руд.
Кроме магнетита, промышленное значение имеют сопутствующие ему оксиды — гематит и мартит (Fe2O3). Кристаллический гематит называют железным блеском, а тонкозернистый — красным железняком. Карбонат железа — сидерит и гидрооксиды — лимонит и гетит имеют бурую и желтовато-бурую окраску. Эти минералы слабомагнитны, имеют немного меньшую плотность, чем магнетит, и, как правило, добываются только вместе с ним. Титаномагнетиты — ильменит, перовскит и другие — также имеют промышленное значение, но добываются ради титана. Перспективным источником железа являются также пиритные огарки, остающиеся после обжига пирита в производстве серной кислоты.
Основным способом обогащения железных руд является магнитная сепарация. Минералы-ферромагнетики содержат ионы с неспаренными спинами, магнитные моменты которых ориентируются кристаллическим полем в пределах магнитных доменов; их можно уподобить микромагнитам размером от микрометра до миллиметра. Магнитные моменты доменов в отсутствие магнитного поля имеют различную ориентацию, поэтому намагниченность, например, чистого самородного железа не проявляется. В магнитном поле домены, подобно спинам в парамагнетиках, ориентируются, что вызывает разориентацию доменов у одних минералов сразу, у других спустя некоторое время, а у третьих сохраняется остаточная намагниченность. Это связано с разной подвижностью магнитных моментов доменов в разных минералах, зависящей от наличия нарушений кристаллической решетки — дислокации, включений других минералов, зональности или мозаичности кристаллов и других неоднородностей.
Ни один природный минерал не притягивается магнитом с такой силой, как металлическое железо, но зато почти все железосодержащие минералы обладают в той или иной степени магнитными свойствами. Магнетит содержит 72 % железа и всего в 2,5 раза слабее, чем металлическое железо, притягивается магнитом. Несколько слабее притягивается железомарганцевый минерал — франклинит и железотитановые — титаномагнетит и ильменит. Эти сильномагнитные минералы легко отделяются электромагнитом. Еще в XVII в. обычным магнитом магнетит удаляли из смеси тяжелых минералов. Плотность магнетита — 5,2 г/см3, при промывке и гравитационном обогащении он попадает в шлихи вместе с золотом, вольфрамитом, касситеритом.
Принципиальная схема магнитной сепарации
а — сепаратор, б — железоуловитель
Большинство минералов проявляют магнитные свойства только в сильном магнитном поле с высокой напряженностью. Магнитная индукция, которую создает магнитное поле, изменяется в присутствии минерала. Мерой ее изменения служит магнитная проницаемость минералов и связанная с пей магнитная восприимчивость. Магнитные свойства зависят не столько от содержания железа, сколько от структуры соединения. Наиболее магнитна окись-закись железа — магнетит. Окиси железа — гематит и лимонит — слабомагнитны, Невелика магнитность сульфида железа — пирита и карбоната железа — сидерита. Чтобы изменить природные свойства минералов, руду обжигают, нагревая до температуры 550–600 °C с добавкой углерода, а сидерит, содержащий углерод, — без добавок. Вместо углерода можно применить доменный или коксовый газ, содержащий окись углерода, которая также действует как химический восстановитель. Восстанавливая часть трехвалентного железа Fe2O3 в закись-окись Fe3O4 — магнетит, обжиг превращает все железные минералы, содержащиеся в руде, в сильномагнитные. Кроме того, обжиг облегчает последующее дробление и измельчение, так как нагревание до высокой температуры и охлаждение приводят к растрескиванию породы.
Основная часть магнитного сепаратора — электромагниты, создающие магнитное поле определенной интенсивности, в котором немагнитные и магнитные минералы ведут себя по-разному. На немагнитные действует только сила тяжести; магнитные, кроме того, притягиваются электромагнитом. Соотношение этих двух сил и определяет траекторию движения магнитных частиц.
Частицы с различной магнитной восприимчивостью попадают в различные фракции. Чем сильнее и определеннее выражены магнитные свойства, тем точнее сепарация.
В зависимости от соотношения магнитных восприимчивостей разделяемых минералов применяются сепараторы с различной интенсивностью магнитного поля. Сепарация может происходить как в воздушной, так и в водной среде.
Кроме электромагнитов, сепараторы снабжены устройством для непрерывной загрузки руды и разгрузки концентратов и хвостов.
Простейшей конструкцией магнитного сепаратора, отвечающей всем этим требованиям, является вращающийся барабан с системой электромагнитов (подвижной или неподвижной) внутри. Материал подается сверху на цилиндрическую поверхность барабана: магнитные зерна притягиваются и падают под барабан, а немагнитные скользят по поверхности и оказываются в приемнике перед барабаном.
Барабанный магнитный сепаратор
Барабанный сепаратор для сухого обогащения был изобретен Венстремом в конце XIX в. в Швеции, славящейся богатыми залежами железных руд. Там же в начале XX в. Грондаль разработал для «мокрой» сепарации мелкой магнетитовой руды конструкцию сепаратора, оборудованного специальной ванной, в которую подается пульпа с рудой. Барабан может помещаться в воде или над ее поверхностью.
Иногда применяется сепаратор с двумя барабанами. В нем концентрат с первого барабана перемещается на второй. Барабан можно заменять системой последовательно расположенных роликов.
Однако барабанные сепараторы не могут обеспечить достаточно интенсивного магнитного поля. Большая поверхность барабана «распыляет» это поле. Поэтому для обогащения слабомагнитпых вольфрамовых руд был создан сепаратор с замкнутой магнитной системой и заостренными полюсами, между которыми проходила лента транспортера, несущая материал. Такой сепаратор впервые сконструировал Ветерилл в США в конце XIX в.
Вскоре стали применяться и «мокрые» ленточные сепараторы с транспортером, погруженным в пульпу.
В России первый магнитный сепаратор (барабанный) был сконструирован В. А. Петровым в 1911 г. Он был установлен на Урале для сухой сепарации магнетитовой руды.
Серийное изготовление магнитных сепараторов началось у нас только в 1932–1934 гг. А сейчас в СССР созданы различные конструкции магнитных сепараторов. Разработана теория магнитного обогащения руд. Работы И. С. Дацюка, В. Г. Деркача, В. И. Кармазина, В. В. Кармазина и других позволили создать эффективные способы магнитной сепарации материалов.