На протяжении долгого промежутка времени температура поверхности белого карлика равна примерно 63 градусам Кельвина, что очень близко к температуре жидкого азота. В недрах звезды несколько погорячее, хотя и ненамного. Основная часть внутренних областей белого карлика заполнена вырожденным веществом, в силу чего тепло легко распространяется из внутренних областей к наружным. Благодаря этому относительно легкому переносу тепла, звезда достигает почти постоянной температуры на протяжении практически всей своей внутренней области. Однако внешние слои звезды, близкие к ее поверхности, состоят не из вырожденного, а из обычного вещества.
Самый верхний слой звезды, в принципе, способен поддерживать химические реакции и имеет доступ к обширному диапазону энергий фотонов, которые эти реакции запускают. Аннигиляция темной материи, которая происходит в ядре звезды, производит высокоэнергетическое излучение — гамма-лучи, энергия которых достигает миллиардов электрон вольт. Пока это излучение добирается до верхних слоев звезды, его волны становятся длиннее, а энергия фотонов, соответственно, уменьшается. На внешней поверхности звезды энергия фотонов, в среднем, составляет некоторую долю электронвольта. Для сравнения скажем, что в химических реакциях типичные значения энергии на частицу составляют несколько электронвольт. Таким образом, в атмосфере белого карлика имеется именно тот диапазон энергий фотонов, который необходим для запуска химических реакций.
А как насчет совокупного энергетического запаса такой звезды? Белый карлик, существующий за счет аннигиляции темной материи, вырабатывает энергию, равную порядка 1015 ватт. Эта мощность излучения мала по сравнению со светимостью современного Солнца, но достаточно велика по сравнению с совокупной мощностью, которую вырабатывает вся человеческая цивилизация. В качестве другого сравнения отметим, что доля солнечной энергии, которую воспринимает Земля, составляет около 1017 ватт. Другими словами, мощность, необходимая для запуска биологической эволюции в атмосфере белого карлика, составляет один процент от полной мощности, доступной земной биосфере в наши дни.
Зайдем в этом мысленном эксперименте еще дальше, приблизительно оценив вероятность существования в атмосферах белых карликов каких-либо форм жизни. Следуя примеру Фримена Дайсона, предположим, что жизнь подчиняется некой разновидности закона соответствия масштабов, что, в свою очередь, означает, что субъективное время, которое ощущает живое существо, зависит от температуры, при которой оно функционирует. В случае более низких температур жизнь течет медленнее, поэтому на ощущение того же числа мгновений сознания у такого существа будет уходить больше времени.
Что касается нашей гипотетической биоты, развивающейся вблизи поверхности белого карлика, ее окружающая температура должна быть около 63 градусов Кельвина, что примерно в пять раз меньше, чем температура млекопитающих. Гипотеза соответствия масштабов гласит, что такому существу требуется в пять раз больше реального (физического) времени, чтобы пережить такое же фактическое «количество» жизни. Таким образом, по сравнению с жизнью на Земле, жизнь в атмосфере белого карлика теряет коэффициент пять в силу того, что имеет меньшую скорость метаболизма, а также коэффициент сто в силу того, что имеет меньшую мощность. Эта потеря коэффициента 500 более чем компенсируется имеющимся в наличии временем, которое в сто миллиардов раз длиннее. Объединяя эти два конкурирующие действия, мы полагаем, что жизнь в атмосфере белого карлика имеет численное преимущество примерно в сто миллионов. Даже если эволюция жизни в атмосфере белого карлика в сто миллионов раз менее эффективна, чем биологическая эволюция на Земле, эта звезда все равно располагает такими временем и энергией, которых достаточно, чтобы породить целую сеть различных форм жизни, по своему масштабу сравнимую с биосферой сегодняшней Земли.
Однако наше понимание жизни и эволюции далеко от полного. Данная линия экстраполяции- служит не строгим предсказанием, а скорее интересной возможностью. Атмосферы белых карликов располагают достаточно большим источником энергии и воистину огромным количеством времени. В такой среде возникновение интересной химии, в принципе, возможно. Хотя, вообще, мы не можем гарантировать, что время, энергия и химия являются достаточными условиями для появления биологии. Однако в единственном известном нам примере интересная химия привела к эволюции жизни. Реализуется ли такая возможность в будущем — нам не известно.