Один из интересных опытов, который мы можем проделать с нейронами Маккалока — Питтса, — это использование их в качестве компонентов компьютера. В таком компьютере арифметические и логические операции будут выполняться внутри микропроцессора в арифметико-логическом устройстве (АЛУ). Нейронные цепи могут выполнять операции, схожие с компьютерными, с помощью логических вентилей, например И, ИЛИ, а также другие операции, свойственные биологическим нейронам. Процедура построения логического вентиля, выполняющего операцию булевой алгебры, начинается с определения соответствующих величин для коэффициентов соединений (w± и w2) и порога активации (U), как показано на схеме.
Комбинируя несколько искусственных нейронов, пошагово соединяя выходы одних со входами других, мы можем получить цепи, эмулирующие операторы И и ИЛИ. Однако можно сделать это проще, с одним нейроном Маккалока — Питтса. Эти простые опыты доказывают, что, как и думали Тьюринг, Маккалок и Питтс, нейрон является автоматом с двумя состояниями: активным, или возбужденным (1), и состоянием покоя (0), а также что нейронная цепь может выполнять функции, схожие с функциями арифметико-логического устройства (АЛУ) компьютера. Используем следующую программу на языке BASIC-256, чтобы показать, что нейрон будет вести себя как вентиль И при следующих входящих (О и 1) и исходящих сигналах.
rem Оператор И
els
wl=0.5:w2=0.5:u=0.5
input "вход 1 = ",el
input "вход 2 = ",e2
total=wl*el+w2*e2
if total <=u then
print "выход = 0"
else
print "выход = 1"
end if
С другой программой нейрон будет вести себя как вентиль ИЛИ.
rem Оператор ИЛИ
els
wl=class="underline" w2=class="underline" u=0.5
input "вход 1 = ",el
input "вход 2 = ",e2
total=wl*el+w2*e2
if total <=u then
print "выход = 0"
else
print "выход = 1"
end if
Итак, какой же была модель искусственного нейрона Алана Тьюринга? Представим, что нейрон — это круг, соединенный с другими кругами, символизирующими соседние нейроны. Добавим в местах соединений прямоугольник, который будет обозначать модификатор связи Тьюринга, дающий дезорганизованной машине типа В способность обучаться. Каждый модификатор связи имеет две линии, или «волокна тренировки», которые мы обозначим как Р и I.
Одним из практических аспектов цифровой электроники и следствием булевой алгебры является тот факт, что вентили И и ИЛИ могут получиться из вентиля И-НЕ (NAND), то есть вентиля И, выход которой трансформирован вентилем НЕ. Вентиль НЕ имеет единственный вход и единственный выход и изменяет величину одного бита: если на входе О, то на выходе 1, и наоборот. Для его обозначения используется следующий символ.
| А | НЕ А |
| 0 | 1 |
| 1 | 0 |
Поведение вентиля И-НЕ представлено в таблице. Рядом — символ, используемый для обозначения данного вентиля.
| А | НЕ А | А И-НЕ В |
| 0 | 0 | 1 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |