Выбрать главу

Поки глобалізація примушує нас шукати розв’язання планетарних проблем, приклад ЦЕРНу, його успіху і законів допомагає нам знаходити способи співпраці, без яких не обійтись у будь-якій науковій галузі.

Газові детектори

Перший значний крок було зроблено 1960 р. з винайденням іскрових камер. Коли таку камеру перетинала будь-яка заряджена частинка, з’являлася цяточка світла. Іскрові камери мали цінну перевагу: здатність залишатися чутливими після утворення вільних іонів частинками в газі — тож час застосування високого тиску, здатного утворити іскру, можна було розрахувати з точністю до однієї мільйонної частки секунди.

Аби отримати детектори, за розмірами не менші за бульбашкові камери — звісно, зі значно меншим просторовим розділенням — з’єднували по кілька таких іскрових камер; упродовж мікросекунди очікування за допомоги об’єднаних надшвидкісних електронних детекторів можна було виявити рідкісні частинки. Саме так команда під керівництвом Джека Стенбергера, Леона Ледермана та Мелвіна Шварца відкрила нейтрино другого типу — за це 1988 р. вони одержали Нобелівську премію.

Слід було також визначити розташування іскор — для цього у фізиків були лише очі, а хотілося виявляти їх дуже швидко за допомоги електронної техніки, використовуючи високий заряд іскри. Винайшли чимало способів. Щодо мене, то я ввів у вжиток аж два: перший спирався на поділ заряду іскор між двома електродами, а другий — на запізнення електричного сигналу, у випадку, коли електрод зроблено за принципом лінії затримки.

Однак уже саме факт залежності від іскри був вадою, адже вмикати камеру можна було, лише зачекавши одну мільйонну частку секунди. А розвиток прискорювачів пропонував фізикам нові й нові неймовірні можливості; у теоретичній фізиці з’явилася потреба у вивченні рідкісних явищ — це обіцяло революційний стрибок уперед.

Тоді мені пощастило скористатися з досвіду, набутого під час написання 1954 р. дисертації з визначення частинок. Пропорційні лічильники підтримували швидкість підрахунку в один мільйон імпульсів на секунду. Імпульси, утворювані ними, були надто слабкі й вимагали застосування чутливих підсилювачів з низьким рівнем шуму та поміркованою вартістю. Тоді в усі галузі фізики тріумфально увійшли транзистори, і здавалося цілком реальним створити простір, повний чутливих струн, завдяки яким можна визначити розташування зарядженої частинки.

Такий дослід невдовзі відбувся. Достатньо було натягнути тонкі позитивно заряджені струни, аби притягнулись електрони і утворилися лавини біля одного з позитивних електродів; це дозволило спостерегти, що відбувається, якщо підвищити тиск, помістивши всю конструкцію до газу, який використовують у пропорційних лічильниках.

Дослід здійснила низка відомих команд науковців. Та коли його повторювали спрощено, ставили натягнуті струни перед одним-єдиним пласким електродом, результат був катастрофічним. На самому початку ампліфікації з’являлась іскра і знищувала сам ампліфікатор, який коштував тисячу доларів. Коли нарешті на арену зважився вийти я, то мав досвід із власноруч збудованими для дисертації лічильниками. Я попросив наших техніків сконструювати камеру з двадцятьма струнами на відстані два міліметри одна від одної, всіляко намагаючись уникнути розрядів, особливо в місцях, де струни з’єднувалися з рамкою.

Пропорційна камера

Наша перша камера складалася з ряду струн товщиною у двадцять мікронів, натягнутих між двома пласкими електродами. Працювала вона бездоганно. Кожна зі струн камери могла самостійно визначати імпульси, що утворювалися під час проходження сусідньої іонізованої частинки. Отже, ми могли натягнути сотні тисяч струн і виявити таким чином траєкторії заряджених частинок. Ми ретельно дослідили шляхи утворення імпульсів, їхнє походження та неймовірну гнучкість газових детекторів зі складною структурою, що дозволяла електронам — навіть ізольованим — повідомити стимульованим імпульсом про свою присутність.

Тоді наша невеличка група, що вдосконалювала іскрові камери, взялася до створення пропорційних камер великих розмірів для фізики високих енергій. Але ми миттю вичерпали, здавалося б, неозоре поле наукової діяльності, яке відкрилося перед нами.

Під час бомбування іонізованими частинками з мінімумом іонізації, що призводило до утворення лавини, кожна струна демонструвала чудові негативні імпульси. Коли одна лавина електронів утворювалась у кількох мікронах від струни діаметром у двадцять мікронів, імпульси, звісна річ, були негативні. Та до лавини призводило не лише притягування до струни лектронів. Вони притягувалися за одну мільярдну частку секунди, а наші прилади не могли вловлювати настільки швидкі імпульси. Позитивні ж іони лавини, навпаки, потрапивши до інтенсивного поля навколо струни, відштовхувалися на достатньо велику відстань, тож існуючим на той час детекторам було нескладно зафіксувати стимульовані сигнали; складалося враження, ніби імпульс спричинено притягуванням електронів.