Выбрать главу

What light does Bell’s first account cast on this question? What are the essential elements that go into the creation of history? Bell’s analysis promises to give us real answers to these questions, since an alpha-particle track can truly be seen as prototypical history. All the elements are there – a unique succession of events, a coherent story and qualitative change as it progresses. It even models birth – when the particle escapes from the radium atom – and demise – when it finally comes to rest. It literally staggers to its death. The laws that govern the unfolding of history are beautifully transparent. They combine, in an intriguing way, causal development – the forward thrust of the track – with unpredictable twists and turns governed only by probability. History is created by what looks like a curious mixture of classical and quantum mechanics – the continuous track and the twists and turns, respectively.

Three distinct factors together create history in this first account. First, the alpha particle emerges from the radium atom in a state that matches geometrical optics. Its wave function propagates outward in perfectly spherical waves of an extremely regular shape and with a very high frequency and short wavelength. This is a perfect example of a semiclassical solution. Hamilton’s ‘light rays’ are the tracks that run radially outward from the radium atom, always perpendicular to the wave-function crests. Each of these tracks is a good simplified model of the one solitary track that eventually emerges.

I mentioned the ongoing saga of geometrical optics. Schrödinger attempted to create history by superimposing many slightly different semiclassical solutions in a wave packet that mimicked particle motion. We can now see that this attempt was doomed to failure, mainly because it attempted to create particle tracks using the quantum-mechanical properties of just one particle in isolation. The interaction of the particle with the environment played no role in Schrödinger’s attempt, but is crucial in the account just given. We cannot begin to think of a track being formed without the atoms waiting to be ionized. Geometrical optics still plays a vital role because the very special semiclassical state ensures that sharply defined beams are created by the process of ionization and collapse.

We no longer need many semiclassical solutions: one semiclassical solution is now sufficient to create one history. Nevertheless, at least one semiclassical solution remains – and will remain – the prerequisite for history. The core mathematical fact discovered by Hamilton keeps reappearing and being used in different ways. I feel sure that this is the true deep origin of history – we have already seen alpha-particle tracks form before our eyes. Watch a little longer, and even Henry VIII and his six wives will appear.

The second element in Bell’s account is collapse: crude, but effective. Little more needs to be said except that it is hard to believe that nature can behave so oddly. However, Bell’s down-to-earth account does show up the artificiality of the quantum measurement rules. These are formulated for individual observables, and insist that measurement invariably results in the finding of a single eigenvalue of a chosen observable. But in the case of the alpha particle ionizing an atom, no pure measurement results – there is simultaneous measurement of both position and momentum (both with imperfect accuracy, so that the uncertainty relation is not violated).

The third element in the creation of history is low entropy: the initial state of the system is highly special. The alpha particle, which could be anywhere, is inside the radioactive nucleus; the countless billions of cloud-chamber atoms, which could be in innumerable different excited states, are all in their ground states. The only reason we are not amazed by such order is our familiarity with the special. What we have known from childhood ceases to surprise us. But even the experiencing of coherent thoughts is most improbable. Among all possible worlds, the dull, disordered, incoherent states are overwhelmingly preponderant, while the ordered states form a miniscule fraction. But such states, sheer implausibility, must be presupposed if history is to be made manifest – at least it is in the normal view of things.

The initial ordered state creates history and a stable canvas on which it can be painted. The special position of the alpha particle gives rise to its semiclassical state. The thousand or so atoms it ionizes stand out as a vivid track on the un-ionized billions. Photographed before dispersal, the track becomes a record of history. If a large proportion of the atoms were already ionized, such a track could hardly form, let alone stand out. We might claim that history had unfolded, but there would be no evidence of it.

Records are all we have. We have seen one account of their creation. Except for quantum collapse, it does not seem outlandish. But Bell gives a second, fully quantum account in which the monstrously multidimensional configuration space of the cloud chamber is vital. This story of history is amazing. The next section prepares for it.

THE IMPROBABILITY OF HISTORY

The cloud chamber is treated schematically as a collection of hydrogen atoms, each consisting of a nucleus – a single proton – and an electron. We ignore the fact (here not an issue) that all protons are identical, and so are all electrons. It is also reasonable to assume that the protons are at fixed points, and to treat only the electrons and the alpha particle quantum mechanically. The coordinates of each electron can be three mutually perpendicular distances from its proton. A real cloud chamber may contain 1027 atoms. It is daunting to contemplate a space with 3 × 1027 (+ 3 for the alpha particle) dimensions, but we must do our best if we are to get a true feeling for what is going on in quantum mechanics.

The really important thing here is that each configuration point represents one totality of all electron positions in the chamber. If we keep all the electrons fixed except one, which we move, it explores just three of the dimensions. In a much more modest way, there is an analogy here with our existence on the Earth: we live in three dimensions, but are normally restricted to the Earth’s two-dimensional surface and do not normally move far in the third dimension. For the electron, the unexplored dimensions are not one but 3 × 1027.

We can now think about representing an ionization track. The electron of a hydrogen atom has a characteristic probability distribution of diameter 10−8 centimetres around its proton. In quantum mechanics it is difficult to be certain about anything, but if we find a proton with no electron near it, this can indicate ionization – the electron has been torn away by the alpha particle. Imagine that we find a state of the chamber in which 1000 protons have no electrons near them; that these 1000 electron-less protons all lie more or less on a line between the decayed radium nucleus and the alpha particle; and that the statistics of the kinks along the line match Born’s predictions for small-angle scattering. Naturally we should say that this is an alpha-particle track. It has all the appearances of recording quantum evolution with intermittent collapse. This state of the chamber, interpreted as an ionization track, is a perfect time capsule. Purely mathematically, it is a single point in a space. But the one point stands for a distribution of a huge number of electrons. As such, it is extraordinarily special – it is like a snapshot of history itself. If it could think, it would say, ‘I am the track of an alpha particle moving in space and time through a cloud chamber.’

If the configuration space has innumerable dimensions, how much vaster is the number of its points. The overwhelming – hugely overwhelming – majority of the distributions they represent correspond to nothing interesting or striking. Sprinkled very thinly through this immense space are the distributions in which 1000 proton nuclei have no electrons near them. There are an incredible number of such distributions, but they are still much more thinly distributed than the stars in the sky. Within this already very thin company with 1000 ionizations are those for which the ionizations are all more or less on the line between the radium nucleus and its escaped alpha particle. But still these are not yet alpha-particle tracks. There is one more sieve – the scattering angles of the kinks must match Born’s statistical distribution.