You can return home by the same method. But your homecoming may not be pleasant. Billions of years will have passed at home, while you have aged only a few years. Imagine what you find.
These types of slingshots could provide a means for spreading a civilization across the great reaches of intergalactic space. The principal obstacle (perhaps insurmountable!) is finding, or making, the needed black hole binaries. The launch binary might not be a problem if you are a sufficiently advanced civilization, but the slow-down binary is another matter.
What happens to you if there is no slow-down binary, or there is one, but your aim is bad and you miss it? This is a tricky question because of the expansion of the universe. Think about it.
As exciting as these three far-future propulsion systems may seem, they truly are far future. Using twenty-first-century technology, we are stuck with thousands of years to reach other solar systems. The only hope (an exceedingly faint hope) for faster interstellar travel, in the event of an earthly disaster, is a wormhole like that in Interstellar, or some other extreme form of spacetime warp.
IV
THE WORMHOLE
14
Wormholes
How Wormholes Got Their Name
My mentor, John Wheeler, gave astrophysical wormholes their name. He based it on wormholes in apples (Figure 14.1). For an ant walking on an apple, the apple’s surface is the entire universe. If the apple is threaded by a wormhole, the ant has two ways to get from the top to the bottom: around the outside (through the ant’s universe) or down the wormhole. The wormhole route is shorter; it’s a shortcut from one side of the ant’s universe to the other.
The apple’s delicious interior, through which the wormhole passes, is not part of the ant’s universe. It is a three-dimensional bulk or hyperspace (Chapter 4). The wormhole’s wall can be thought of as part of the ant’s universe. It has the same dimensionality as the universe (two dimensions) and it joins onto the universe (the apple’s surface) at the wormhole’s entrance. From another viewpoint, the wormhole’s wall is not part of the ant’s universe; it is just a shortcut by which the ant can travel across the bulk, from one point in its universe to another.
Flamm’s Wormhole
In 1916, just one year after Einstein formulated his general relativistic laws of physics, Ludwig Flamm in Vienna discovered a solution of Einstein’s equations that describes a wormhole (though he did not call it that). We now know that Einstein’s equations allow many kinds of wormholes (wormholes with many different shapes and behaviors), but Flamm’s is the only one that is precisely spherical and contains no gravitating matter. When we take an equatorial slice through Flamm’s wormhole, so it and our universe (our brane) have just two dimensions rather than three, and when we then view our universe and the wormhole from the bulk, they look like the left part of Figure 14.2.
With one of our universe’s dimensions lost from the picture, you must think of yourself as a two-dimensional creature confined to move on the bent sheet or on the wormhole’s two-dimensional wall. There are two routes for travel from location A in our universe to location B: the short route (dashed blue curve) down the wormhole’s wall, or the long route (dashed red curve) along the bent sheet, our universe.
Of course, our universe is really three dimensional. The concentric circles in the left part of Figure 14.2 are really the nested green spheres shown to the right. As you enter the wormhole along the blue path from location A, you pass through spheres that get smaller and smaller. Then the spheres, though nested inside each other, cease changing circumference. And then, as you exit the wormhole toward location B, the spheres get larger and larger.
For nineteen years, physicists paid little attention to Flamm’s outrageous solution of Einstein’s equations, his wormhole. Then in 1935 Einstein himself and fellow physicist Nathan Rosen, unaware of Flamm’s work, rediscovered Flamm’s solution, explored its properties, and speculated about its significance in the real world. Other physicists, also unaware of Flamm’s work, began to call his wormhole the “Einstein-Rosen bridge.”
Wormhole Collapse
It is often difficult to extract, from the mathematics of Einstein’s equations, a full understanding of their predictions. Flamm’s wormhole is a remarkable example. From 1916 until 1962, nearly a half century, physicists thought that the wormhole is static, forever unchanging. Then John Wheeler and his student Robert Fuller discovered otherwise. Looking much more closely at the mathematics, they discovered that the wormhole is born, expands, contracts, and dies, as shown in Figure 14.3.
Initially, in picture (a), our universe has two singularities. As time passes, the singularities reach out to each other through the bulk and meet to create the wormhole (b). The wormhole expands in circumference, (c) and (d), then shrinks and pinches off (e), leaving behind the two singularities (f). The birth, expansion, shrinkage, and pinch-off happen so quickly that nothing, not even light, has time to travel through the wormhole from one side to the other. Anything or anyone that attempts the trip will get destroyed in the pinch-off!
This prediction is inescapable. If the universe were ever, somehow, to develop a spherical wormhole that contains no gravitating matter, this is how the wormhole would behave. Einstein’s relativistic laws dictate it.
Wheeler was not dismayed by this conclusion. On the contrary, he was pleased. He regarded singularities (places where space and time are infinitely warped) as a “crisis” for the laws of physics. And crises are wonderful tutors. By probing wisely, we can get great insights into the physical laws. To this I return in Chapter 26.
Contact
Fast-forward a quarter century, to May 1985: a phone call from Carl Sagan asking me to critique the relativistic science in his forthcoming novel Contact. I happily agreed. We were close friends, I thought it would be fun, and, besides, I still owed him one for introducing me to Lynda Obst.
Carl sent me his manuscript. I read it and I loved it. But there was one problem. He sent his heroine, Dr. Eleanor Arroway, through a black hole from our solar system to the star Vega. But I knew that a black-hole interior cannot be a route from here to Vega or to anywhere else in our universe. After plunging through the black hole’s horizon, Dr. Arroway would get killed by its singularity. To reach Vega fast, she needed a wormhole, not a black hole. But a wormhole that does not pinch off. A traversable wormhole.