Выбрать главу

1. Математика является полной, т. е. любое математическое утверждение можно доказать или опровергнуть, основываясь на правилах самой дисциплины.

2. Математика является непротиворечивой, т. е. нельзя доказать и одновременно опровергнуть какое-либо утверждение, не нарушая принятых правил рассуждения.

3. Математика является разрешимой, т. е., пользуясь правилами, можно выяснить относительно любого математического утверждения, доказуемо оно или опровержимо.

Фактически программа Гильберта стремилась выработать некую общую процедуру для ответа на все математические вопросы или хотя бы доказать существование таковой. Сам учёный был уверен в утвердительном ответе на все три сформулированных им вопроса: по его мнению, математика действительно была полной, непротиворечивой и разрешимой. Оставалось только это доказать.

Более того, Гильберт полагал, что аксиоматический метод может стать основой не только математики, но и науки в целом. В 1930 г. в статье «Познание природы и логика» он писал: «…даже в самых обширных по своему охвату областях знания нередко бывает достаточно небольшого числа исходных положений, обычно называемых аксиомами, над которыми затем чисто логическим путем надстраивается всё здание рассматриваемой теории».

Какими были бы для дальнейшего развития науки последствия успеха Гильберта и его школы? Если бы, как он считал, вся математика (и наука в целом) сводилась к системе аксиом, то их можно было бы ввести в вычислительную машину, способную по программе, следующей общим логическим правилам, обосновать любое утверждение (т. е. доказать теорему), вытекающее из исходных утверждений.

Будь теория Гильберта реализована, работающие в круглосуточном режиме суперкомпьютеры непрерывно доказывали бы всё новые и новые теоремы, размещая их на бесчисленных сайтах «всемирной паутины». Вслед за математикой «аксиоматическая эпоха» наступила бы в физике, химии, биологии и, наконец, очередь дошла бы и до науки о человеческом сознании. Согласитесь, окружающий нас мир, да и мы сами, выглядели бы в подобном случае несколько иначе.

Однако «вселенская аксиоматизация» не состоялась. Вся суперамбициозная, грандиозная программа, над которой несколько десятилетий работали крупнейшие математики мира, была опровергнута одной-единственной теоремой. Её автором был Курт Гёдель, которому к тому времени едва исполнилось 25 лет.

В 1930 г. на конференции, организованной «Венским кружком» в Кёнигсберге, он сделал доклад «О полноте логического исчисления», а в начале следующего года опубликовал статью «О принципиально не разрешимых положениях в системе Principia Mathematica и родственных ей системах». Центральным пунктом его работы были формулировка и доказательство теоремы, которая сыграла фундаментальную роль во всем дальнейшем развитии математики, и не только её. Речь идет о знаменитой теореме Гёделя о неполноте. Наиболее распространенная, хотя и не вполне строгая её формулировка утверждает, что «для любой непротиворечивой системы аксиом существует утверждение, которое в рамках принятой аксиоматической системы не может быть ни доказано, ни опровергнуто». Тем самым Гёдель дал отрицательный ответ на первое утверждение, сформулированное Гильбертом.

Любопытно, что на этой же конференции с докладом на тему «Каузальное знание и квантовая механика» выступил Вернер Гейзенберг. В этом докладе были намечены первые подходы к его знаменитым «соотношениям неопределенности».

Выводы Гёделя произвели в математическом сообществе эффект интеллектуальной бомбы, тем более что вскоре на их основе были получены опровержения двух других пунктов программы Гильберта. Оказалось, что математика неполна, неразрешима, и её непротиворечивость нельзя доказать (в рамках той самой системы, непротиворечивость которой доказывается).

Теорема Гёделя.

С тех пор прошло три четверти века, но споры о том, что же все-таки доказал Гёдель, не утихают. Особенно жаркие прения идут в околонаучных кругах. «Теорема Гёделя о неполноте является поистине уникальной. На неё ссылаются всякий раз, когда хотят доказать „всё на свете“ — от наличия богов до отсутствия разума», — пишет выдающийся современный математик В.А. Успенский.

Если оставить в стороне многочисленные подобные спекуляции, то нужно отметить, что учёные разделились в вопросе оценки роли Гёделя на две группы. Одни вслед за Расселом считают, что знаменитая теорема, которая легла в основу современной математической логики, тем не менее, оказала весьма незначительное влияние на дальнейшую работу за пределами данной дисциплины — математики как доказывали свои теоремы в «догёделевскую» эпоху, так и продолжают доказывать их и по сей день.