Часть усиленного сигнала через конденсатор С5 подводится к диодам VD1, VD2. Выпрямленное напряжение отпирает транзистор VT2, при этом транзистор VT3 оказывается запертым.
Когда человек приближается к антенне WA1, высокочастотное поле сильно искажается, и генерация срывается. Транзистор VT2 запирается, а следующий — VT3 оказывается открытым, подавая сигнал на включение звукового сигнала.
Звук может подавать, например, «музыкальная открытка» (узел А1). Поскольку звуковые открытки рассчитаны на питание от одного 1,5-вольтового элемента, в нашей конструкции с трехвольтовым питанием избыток напряжения гасится последовательно включенными кремниевыми диодами VD3, VD4. Мелодию «играет» пьезоизлучатель BQ1, входящий в комплект открытки.
Роль трансформатора Т1 могут играть катушки магнитной антенны от карманного радиоприемника. Все детали вместе с батарейкой GB1 (два гальванических элемента LR6) размещаются на общей монтажной плате, которую можно поместить в затейливую пластмассовую шкатулку. Под крышкой шкатулки или у ее запора можно приклеить полоску латунной фольги — это и будет антенна WA1. Прикосновение к шкатулке каждый раз будет сопровождаться мелодичным звучанием. Но если вам нужен электронный сторож, а не шкатулка с секретом, можно замок входной двери, например, связать проводом (антенной WA2) с чувствительной точкой «а» генератора. Устройство сработает, даже если попытаться открыть замок в кожаных или резиновых перчатках. Разумеется, в этом случае музыкальный сигнал уместнее заместить более мощным звуком. Для этого к разъему Х2 подключается сигнальная цепь звукового генератора, основой которого является усилительная микросхема DA1, способная раскачать динамическую головку мощностью до 1 Вт при сопротивлении звуковой катушки не менее 8 Ом.
Желаемую частоту звукового сигнала установите подбором номиналов резистора R7 и конденсатора Сб. Генератор получает питание от 9-вольтового сетевого адаптера G1, но при необходимости (скажем, в дачных условиях) его можно заменить батареей из шести элементов LR6 или более емких.
Диоды VD3, VD4 служат для защиты узла А1 от обратного тока со стороны источника G1. Чувствительность устройства можно регулировать переменным резистором R1; однако она не должна быть излишне высока, чтобы в охранном варианте ваш сторож не стал бы реагировать на соседей, проходящих мимо по лестничной площадке.
Ю. ПРОКОПЦЕВ
ЧИТАТЕЛЬСКИЙ КЛУБ
Вопрос — ответ
Интересно, возникает ли «звуковой хлопок» в аэродинамической трубе при продувании самолета в натуральную величину со сверхзвуковой скоростью? По моим представлениям этого не должно быть, поскольку «хлопок» возникает лишь при работающей турбине.
Е.Ф. Бычков,
г. Мозырь Гомельской обл., Беларусь
Проверить это предположение на практике пока невозможно: в мире нет сверхзвуковых труб постоянного потока, способных вместить настоящий самолет. Да и вообще сверхзвуковые испытания, как правило, проводят в импульсных трубах, что обходится значительно дешевле. Тем не менее, должны сказать, что скачок уплотнения, дающий гром среди ясного неба, возникает не в двигателе, а непосредственно на самом планере самолета, преодолевающего звуковой барьер.
У меня есть предложение использовать в качестве источника энергии электричество ионосферы. Ведь, согласно замерам, там существует круговой ток 103 А и напряжение порядка 2x105 В, что соответствует средней мощности около 2x1011 кВт. Снимать же эту энергию можно бы было, например, с помощью плазменных «столбов» газа в атмосфере, создаваемых мощным рентгеновским или лазерным излучением.
Денис Шубин,
п. Демьяново Кировской обл.
Подобные проекты рассматривались неоднократно, но дальше лабораторных опытов дело не движется. Дело в том, что пока никто не может сказать, как отзовется ионосфера на «похищение» у нее энергии. Кроме того, плазменные «столбы» вызывают возражения экологов, которые полагают, что они плохо повлияют на природу того или иного региона.
Как наилучшим образом снять старую краску с оконной рамы или деревянной двери?
Марат Зябликов,
г. Химки