Выбрать главу

Рис. 3.1. Вольт-амперная характеристика диода

В обратном же включении (катодом к плюсу) ток через диод (Iобр) пренебрежимо мал и составляет от нескольких микро- или даже наноампер для обычных маломощных диодов, до единиц миллиампер для мощных выпрямительных. Причем для германиевых диодов обратный ток намного выше, чем для кремниевых, отчего их сейчас практически и не употребляют. Этот ток сильно зависит от температуры и может возрасти на несколько порядков (от нано- до микроампер) при повышении температуры от-50 до +50 °C, поэтому на графике его величина показана очень приблизительно (обратите внимание, что верхняя и нижняя половины графика по оси токов построены в разных масштабах).

В отличие от обратного тока, прямое падение напряжения Uпр гораздо меньше зависит как от типа и конструкции прибора, так и от температуры. Для кремниевых диодов прямое падение напряжения Uпр всегда можно считать равным примерно 0,6–0,7 В, для германиевых или так называемых диодов Шоттки эта величина составляет 0,2–0,4 В. Для кремниевых диодов при изменении температуры на один градус Uпр изменяется примерно на 2,3 мВ.

Если умножить указанное прямое падение напряжения на проходящий через диод в прямом включении ток, то мы получим тепловую мощность, которая выделяется на диоде. Именно она приводит диоды к выходу из строя — при превышении допустимого тока они просто сгорают. Впрочем, тепловые процессы инерционны, и в справочниках указывается обычно среднее значение допустимого тока, а мгновенное значение тока, в зависимости от длительности импульса, может превышать предельно допустимое в сотни раз! Обычное значение среднего предельно допустимого тока через маломощные диоды — десятки и сотни миллиампер. Мощные диоды (при токах 3–5 А и выше) часто приходится устанавливать на радиаторы.

Другая характеристика диодов — предельно допустимое обратное напряжение. Если оно превышено, то диоды также выходят из строя — электрически пробиваются и замыкаются накоротко. Обычная допустимая величина обратного напряжения для маломощных диодов — десятки вольт, для выпрямительных— сотни вольт, но есть диоды, которые выдерживают и десятки тысяч вольт. Далее мы увидим, что существуют приборы, для которых пробой в обратном включении является рабочим режимом, — они называются стабилитронами.

Подробности

Физически диод состоит из небольшого кристаллика полупроводникового материала, в котором в процессе производства формируются две зоны с разными проводимостями, называемыми проводимостью n- и p-типа. Ток всегда течет от p-зоны к n-зоне (это стоит запомнить), в обратном направлении диод заперт. Более подробные сведения о физике процессов, происходящих в р-n-переходе, излагаются во множестве пособий, включая школьные учебники, но для практической деятельности почти не требуются.

Транзисторы

Транзистор— это электронный полупроводниковый прибор, предназначенный для усиления сигналов. Первым таким прибором в истории была электронная лампа (а еще до нее, кстати — электромагнитные реле, которые мы кратко рассмотрим далее). Лампа сумела сделать немало — именно в «ламповую» эпоху возникли радио и телевидение, компьютеры и звукозапись. Но только транзистор и появившиеся на его основе микросхемы сумели действительно перевернуть мир так, что электронные устройства вошли в наш повседневный быт и мы теперь уже не мыслим себя без них.

Транзисторы делятся на биполярные и полевые (или униполярные). Пока мы будем говорить только о биполярных транзисторах.

Физически биполярный транзистор — это структура из трех слоев полупроводника, разделенных двумя р-n-переходами. Поэтому можно себе представить, что он состоит как бы из двух диодов, один из слоев у которых общий, и это весьма близко к действительности! Скомбинировать два диода можно, сложив их либо анодами, либо катодами, соответственно, различают n-р-n- и р-n-р-транзисторы, которые отличаются только полярностями соответствующих напряжений. Заменить n-р-n-прибор на аналогичный р-n-р можно, просто поменяв знаки напряжений во всей схеме на противоположные (и все полярные компоненты — диоды, электролитические конденсаторы — естественно, тоже надо перевернуть). Транзисторов n-р-n-типов выпускается гораздо больше, и употребляются они чаще, поэтому мы пока что будем вести речь исключительно о них, но помнить, что все сказанное справедливо и для р-n-р-структур, с учетом обратной их полярности. Правильные полярности и направления токов для n-р-n-транзистора показаны на рис. 3.2.