Выбрать главу

А каков коэффициент усиления такой схемы по напряжению? Это зависит от соотношения резисторов в базе и в коллекторе. Например, если величина базового резистора составляет 1 кОм, то изменение тока базы при изменении входного напряжения на 1 В составит 1 мА. А в пересчете через h21э это должно привести к изменению тока коллектора на 50 мА, что на нагрузке 100 Ом составит 5 В. Следовательно, усиление по напряжению при таком соотношении резисторов будет равно 5. Чем выше номинал резистора в базе (и ниже — нагрузки), тем меньше коэффициент усиления по напряжению. В пределе, если положить базовый резистор равным нулю, а коллекторный — бесконечности, то максимальный коэффициент усиления современных транзисторов по напряжению может составить величину порядка нескольких сотен (но не бесконечность — за счет того, что база имеет собственное входное сопротивление, а коллектор — собственное выходное). Обратите внимание на это обстоятельство: при повышении величины сопротивления в коллекторе коэффициент усиления увеличивается. В частности, это означает, что лучше вместо резистора включать источник тока, у которого выходное сопротивление очень велико. Именно так и поступают в аналоговых микросхемах, где создать источник тока в виде еще одного-двух транзисторов вместо нагрузочного резистора даже проще (см. главу 6).

В приведенном виде (см. рис. 3.5) схема по усилению исключительно плоха. В самом деле, все зависит от величины коэффициента h21э, а он, во-первых, «гуляет» от транзистора к транзистору, во-вторых, очень сильно зависит от температуры (при повышении температуры повышается). Чтобы понять, как правильно построить усилительный транзисторный каскад со стабильными параметрами, нужно ознакомиться еще с одной схемой включения транзистора — схемой с общим коллектором.

Схема с общим коллектором

Схема с общим коллектором (ОК) показана на рис. 3.6. Учитывая, что напряжение базы и эмиттера никогда не отличается более чем на 0,6 В, мы придем к выводу, что выходное напряжение такой схемы должно быть меньше входного именно на эту величину. Так и есть, схема с общим коллектором иначе называется эмиттерным повторителем, поскольку выходное напряжение повторяет входное (за вычетом все тех же 0,6 В). Каков же смысл этой схемы?

Рис. 3.6. Схема включения биполярного транзистора по схеме с общим коллектором

Схема на рис. 3.6 усиливает сигнал по току (в число раз, определяемое величиной h21э), что равносильно увеличению собственного входного сопротивления схемы ровно в h21э по отношению к тому сопротивлению, которое находится в цепи эмиттера. Поэтому в этой схеме мы можем подавать на «голый» вывод базы напряжение без опасности сжечь переход «база-эмиттер». Иногда это полезно само по себе, если не слишком мощный источник (т. е. обладающий высоким выходным сопротивлением), нужно согласовать с мощной нагрузкой (В главе 4 мы увидим, как это используется в источниках питания). Кстати, схема ОК не инвертирует сигнал, в отличие от схемы ОЭ.

Но главной особенностью схемы с общим коллектором является то, что ее характеристики исключительно стабильны и не зависят от конкретного транзистора, до тех пор, пока вы, разумеется, не выйдете за пределы возможного. Так, сопротивление нагрузки в эмиттере и входное напряжение схемы практически однозначно задают ток коллектора, — характеристики транзистора В этом деле никак не участвуют. Для объяснения данного факта заметим, что токи коллектора и эмиттера, т. е. ток через нагрузку, связаны между собой Соотношением Iн = Iк + Iб, но ток базы мал по сравнению с током коллектора, Потому мы им пренебрегаем и с достаточной степенью точности полагаем, что Iн = Iк. Но напряжение на нагрузке будет всегда равно входному напряжению минус Uбэ, которое, как мы уже выучили, всегда 0,6 В. Таким образом, ток в нагрузке есть (Uвх Uбэ)/Rн, и тогда окончательно получаем, что