Iк = (Uвх — Uбэ)/Rн
Разумеется, мы по ходу дела приняли два допущения (что Iб << Iк и что Uбэ есть точно 0,6 В — и то, и другое не всегда именно так), но мы же давно договорились, что не будем высчитывать характеристики схем с точностью до процентов! Ограничение, которое накладывается транзистором, будет проявляться тут только, если мы попробуем делать Rн все меньше и меньше, в конце концов либо ток коллектора, либо мощность, выделяемая на коллекторе (она равна (Uпит — Uвых)∙Iк), превысят предельно допустимые значения и тогда сгорит коллекторный переход или (если Iк чем-то лимитирован) то же произойдет с переходом «база-эмиттер». Зато в допустимых пределах мы можем со схемой эмиттерного повторителя творить что угодно, и соотношение Iк = (Uвх — Uбэ)/Rн всегда будет выполняться.
Про такую схему говорят, что она охвачена стопроцентной отрицательной обратной связью по напряжению. Об обратной связи мы подробнее поговорим в главе 6, посвященной операционным усилителям, а сейчас нам важно, что такая обратная связь ведет к стабилизации параметров схемы и независимости их как от конкретного экземпляра транзистора, так и от температуры. Но ведь это именно то, чего нам так не хватало в классической схеме с общим эмиттером! Нельзя ли их как-то скомбинировать?
Стандартный усилительный каскад на транзисторе
Действительно, «правильный» усилительный каскад на транзисторе есть комбинация той и другой схемы, этот вариант показан на рис. 3.7.
Рис. 3.7. Стандартный усилительный каскад на биполярном транзисторе
Для конкретности предположим, что Uпит = 10 В, Uвх = 5 В. Как правильно рассчитать сопротивления R3 и RK? Заметим, что схема обладает двумя выходами, из которых нас больше интересует выход 1 (выход усилителя напряжения, соответствующий выходу в схеме с общим эмиттером по рис. 3.5).
При нормальной работе каскада (для обеспечения максимально возможного размаха напряжения на выходе) разумно принять, чтобы в состоянии покоя, т. е. когда Uвх = 5 В, на выходе (на коллекторе транзистора) была половина напряжения питания (в нашем случае тоже примерно 5 В). Это напряжение зависит от коллекторного тока и от сопротивления нагрузки по этому выходу, которое равно в данном случае Rк. Как правило, сопротивление нагрузки Rк нам задано, примем для определенности, что Rк = 5,1 кОм. Это означает, что в «хорошем» режиме, чтобы обеспечить Uвых1 = 5 В, ток коллектора должен составлять 1 мА — посчитайте по закону Ома!
Замечание
На самом деле средний ток коллектора в маломощном биполярном транзисторном каскаде и должен составлять величину порядка 1 мА. Если он много меньше, то в дело вступают шумы и прочие неидеальности транзистора, а когда много больше, то это неэкономно с точки зрения расходования энергии источника, и транзисторы нужно тогда выбирать более мощные, а у них намного больше шумы, утечки, они дороже, крупнее…
Но ток коллектора мы уже умеем рассчитывать, исходя из закономерностей для каскада ОК, он ведь равен (Uвх — Uбэ)/Rэ. Из этих условий получается, что резистор Rэ должен быть равен 4,3 кОм (мы всегда выбираем ближайшее значение из стандартного ряда сопротивлений, и больше не будем об этом упоминать). Мы не сильно нарушим законы природы, если просто положим в этой схеме Rэ = Rк = 5,1 кОм (с точностью до десятых вольта выходные напряжения по обоим выходам будут равны — проверьте!).