Новый микроб назвали «перламутровкой намибийской», поскольку в лучах падающего света он похож на эдакий продолговатый контейнер, набитый мелкими бисеринками жемчуга. На самом деле, это сферические «капельки» элементарной серы, которая отливает перламутровым блеском. «Капельки» восстановленной из сероводорода серы собираются под мембраной-оболочкой микроорганизма, в глубине же его цитоплазмы располагаются «компартменты» с азотом, преобразования которого также дают ему энергию.
Оба процесса энергетического преобразования азота и серы довольно давно известны науке. Да и каждый, кто был на «водах» где-нибудь в Мацесте, помнит желтый «налет» по берегам ручьев и протоков, представляющий собой чистую серу, «выделившуюся» из сероводорода под действием атмосферного кислорода. Человечество начало вносить в почву азотные удобрения не так уж давно — всего каких-то сто лет назад. В почве же микроорганизмы вот уже более миллиарда лет «переводят» неусвояемый растениями аммиак в азотные и азотистые соли, которые «на ура» усваиваются растительными корнями. И в наших высокоорганизованных клетках есть древний «осколок» бескислородного начала энергетического обмена — анаэробный гликолиз.
Анаэробное расщепление глюкозы весьма неэффективно Чистый «навар» составляет каких-то две молекулы АТФ — аденозинтрифосфорной кислоты, из почти что 40, которые клетка добывает в конечном итоге, окисляя молекулу глюкозы с помощью кислорода.
И «золы» в такой анаэробной «топке» очень много: без кислорода образуется молочная кислота, которая ядовита для клетки. Мы ощущаем это, когда на следующий день после неожиданной физической нагрузки у нас «ломит» буквально все тело. Это накопившаяся в мышцах молочная кислота сдвигает нормальную реакцию в кислую сторону, делая невозможным какое бы то ни было движение (очень хорошая майская метафора: поясница после вскапывания земли на даче просто не разгибается).
АТФ называют «энерговалютой» клетки, поскольку живые клетки могут использовать энергию только в виде этого трифосфорного соединения. «Голова» молекулы АТФ представлена аденозином, то есть «буквой» ген-кода с сахаром, и «хвостом» из трех фосфоров: Аденин + Рибоза + Р-Р-Р Последний фосфор отщепляется ферментом, а это приводит к высвобождению энергии, которая идет на различные клеточные процессы. Так оказывается «сопряженным» обмен нуклеиновых кислот (генов) и энергии.
Очень разумное соединение функций, поскольку ген ведь тоже своего рода регулятор, только информационных потоков. Это доказывается существованием специальных клеточных регуляторов, в основе которых лежит ГТФ, то есть гуанозинтрифосфат — другая буква ген-кода с тремя фосфорами. ГТФ регулирует реакцию клетки на действие различных стимуляторов — гормонов, митогенов, ростовых факторов и так далее, а также, как выяснилось совсем недавно, и деление клетки.
Деление это невозможно без тубулина, основного белка микротрубочек (от лат. «тубула» — трубочка) веретена делении, с помощью которых «растаскиваются» к полюсам хромосомы. При раке тубулин начинав! вести себя не так, как «положено», что приводит к нарушениям в делении. Известный противораковый препарат таксол связывается с молекулой тубулина в непосредственной близости от места «прикрепления» ГТФ. Другой ГТФ-связывающий белок р21 «рас», о котором писал журнал «Знание — сила», часто изменен в раковых клетках, что приводит к выключению его функции расшепления ГТФ.
Интересно, что у примитивной археобакгсрии метанококка совсем недавно обнаружен белок, очень похожий на тубулин веретена деления. Микробный белок участвует в образовании специального белкового кольца перетяжки между поделившимися клетками. И хотя, естественно, сходство аминокислотных последовательностей белков микроба и высшей клетки невелико, однако оно очень существенно в месте связывания ГТФ. Да и общая структура белков сходна в своих основных «построениях».
В этом отношении более демонстративным примером сходства служат последовательности одного из сейчас наиболее любимых объектов молекулярных биологов — знаменитого почвенного круглого черничка «Кэнорабдитис элеганс». За каких-то пятнадцать лет удалось от «физической» тенкарты этого организма, состоящего из чуть более тысячи клеток, добраться до полного прочтения генома. Оказалось, что треть «червячных» белков сходна с человеческими, а 70 процентов известных на сегодня белков человека имеют сходные последовательности с кэнорабдитис!