Сейчас решено сделать по-другому. Ситуация в РАН при этом намного более тяжелая и сложная, чем в АН СССР. В РАН, по сути, за годы реформ оказалось выбито полтора поколения исследователей в возрасте 25 — 55 лет. Сейчас ученым повышают зарплату, одновременно сокращая их число (третьего семипроцентного сокращения численности сотрудников РАН в рамках «пилотного проекта», который реализует Министерство образования и науки во главе с Андреем Фурсенко, никто не отменял). «Наука сегодня задолжала обществу. Нужны взаимные обязательства и взаимная ответственность между наукой и обществом», — заявляет министр. В министерстве есть впечатление, что достаточно заплатить побольше денег, и все будет отлично. А это далеко не так...
Таким образом, судя по опубликованным документам, по слушаниям в Государственной Думе, которые организовала в 2007 году партия «Единая Россия», по обсуждению на многих других площадках, проект программы не проработан. Это намного уменьшает ее шансы на успех.
Очень хочется ошибиться, убедить себя и коллег, что происходящее — не блеф и не сон.
Нельзя изучать эту чудесную теорию без того, чтобы порой не возникало ощущение, что математическим формулам присущи самостоятельная жизнь и собственный разум, что они умнее нас, умнее даже открывшего их, что они дают больше, чем в них было ранее вложено.
Г. Герц
В основе нанонауки лежит идея, высказанная в канун 1960 года выдающимся физиком ХХ века, одним из создателей квантовой электродинамики, нобелевским лауреатом Ричардом Фейнманом. В статье «Внизу полным-полно места. Приглашение в новый мир физики» он поставил вопрос о совершенных материалах. В самом деле, прочность, упругость, способность к химическим превращениям определяется прежде всего дефектами, примесями. Например, химически чистое железо не ржавеет. Но можно ли сделать совершенный материал? Можно, если «собирать» его атом за атомом на молекулярном уровне.
Расчеты и эксперименты показывают, к примеру, что углеродные нанотрубки (играющие в нанонауке примерно ту же роль, что и муха дрозофила в генетике) в 100 раз прочнее стали и в 6 раз легче ее. Это, например, позволяет думать о таких проектах, как космический лифт. Точка на расстоянии примерно в 36 тысяч километров от поверхности Земли вращается с той же угловой скоростью, что и сама Земля (геостационарная орбита). Имея трос такой прочности, можно просто, как на подъемнике, поднимать грузы на орбиту. Чтобы эта сказка стала былью, надо иметь еще большие конструкции (порядка 100 тысяч километров). Но ученые уверенно продвигаются в этом направлении. Например, уже существуют (и рассчитываются в нашем институте) тросовые конструкции, в которых космические аппараты связаны тросом длиной 200—300 километров, и это придает таким объектам многие важные и полезные свойства. Однако мы отвлеклись.
Рис. 1
Идея Р. Фейнмана состояла в том, чтобы идти «сверху вниз». Создать макромашины, которые создадут меньшие машины, те еще меньше, наконец, возникнут микромашины, последние сделают наномашины, а те уж будут оперировать отдельными атомами, располагая их так, как мы сочтем нужным. Эта идея в исходном варианте была довольно быстро отвергнута как неосуществимая. Не удается построить такую иерархию машин. С уменьшением масштабов растет соотношение поверхность/объем и поверхностные эффекты начинают играть решающую роль. Например, кусок железа, разрезанного даже не на слишком мелкие кусочки, просто горит в воздухе.
Тем не менее в 80-х годах Г. Биннигом и Г. Рорером был создан удивительный прибор — сканирующий туннельный микроскоп (Нобелевская премия по физике 1986 года). Он позволил не только наблюдать отдельные атомы, но и оперировать с ними. То есть путь «сверху вниз», оказалось, можно пройти! И это возродило нанотехнологические надежды.
К новому 2000 году фирма IBM подарила сотрудникам микрофотографию, где атомами ксенона на никеле были выложены буквы «IBM» и цифры «2000» (рис.1).
Кроме того, существующие технологии создания материалов и объектов подошли к естественному пределу. Напомним шкалу масштабов: 1 нм = 10 9 метра, 1 мкм = 10 6 метра; атом кремния (в кристаллической решетке) — 0,24 нм; молекула воды — 0,37 нм; углерода — 100 нм; клетка 2—20 мкм; волос 5—100 мкм.
С 1950-х годов современная микроэлектроника развивается в соответствии с эмпирическим законом, предложенным одним из основателей фирмы Intel Гордоном Муром: степень интеграции элементов микросхем на кристалле удваивается каждые два года. Эта степень определяет быстродействие и другие ключевые параметры ЭВМ. Естественно, эта геометрическая прогрессия когда-нибудь закончится. Производители стремятся, чтобы это произошло попозже, и трудятся под лозунгом «More Moore!» («больше Мура!»), однако технологический предел для современных подходов — 30 нм. И дальнейшее уменьшение ведет нас в мир наномасштабов.