Выбрать главу

Феноменологию эффекта памяти можно с помощью рис. 20 объяснить следующим образом.

Образец материала с эффектом памяти формы в виде ленты, проволоки, пластины и т. п. деформируется при температуре Тф выше температуры начала мартенситного превращения Мн (на рис. 20 область температур I, где Тф > Мн) с целью придания ему заданной формы. Затем материал охлаждают до температуры, обеспечивающей протекание (полное или частичное) мартенситного превращения в структуре материала (область температур II, где Т <МК).

В этой температурной области (области II) материал деформируют до получения исходной плоскостной формы. Таким образом осуществлен процесс так называемого прямого мартенситного превращения. Схематично процесс прямого и обратного мартенситного превращения показан на рис. 20.

При достижении некоторой температуры мартенситный кристалл приобретает определенные размеры, после чего рост мартенситного кристалла прекращается и устанавливается термоупругое неустойчивое равновесие между кристаллом мартенсита и исходной фазой. Дальнейшее охлаждение вызывает увеличение разности химически свободных энергий и приводит к дальнейшему росту мартенситного кристалла. Сплавы, обладающие ЭПФ, достаточно легко деформируются при температурах ниже Мк — температуры окончания мартенситного превращения при охлаждении.

Восстановить заданную форму образца, которая была ему придана при температуре Тф > Мн, можно при нагреве его до температуры Ак — соответствующей окончанию обратного мартенситного превращения.

Обратное мартенситное превращение обусловлено упругой энергией, накопленной в результате предшествующего прямого мартенситного превращения. Важно отметить, что в процессе нагрева, если образцу препятствуют восстановить заданную форму, внутри него возникают достаточно большие напряжения. Причем, если для деформации ниже Мк требуются небольшие напряжения, то при нагреве до более высоких температур (Т > Ак) возникают большие восстанавливающие форму напряжения. Именно эти напряжения разрывают нитки, связывающие согнутую проволоку, в рассмотренном в начале данного раздела примере.

Весь процесс прямого и обратного мартенситного превращения можно представить в виде замкнутого цикла (рис. 20), в процессе которого форма образца из материала с ЭПФ как бы следует за температурой: при нагреве Т > Мн заготовка получает определенную форму, при охлаждении до температуры Т < Ак образец становится плоским, а при последующем нагреве вновь обретает форму, приданную ему при Тф > Мн.

При дальнейшем цитировании эффект повторяется вновь. Исследования показали, что эффект памяти формы в сплавах может наблюдаться многократно. Например, нитинол может обеспечить несколько миллионов циклов без каких-либо заметных необратимых изменений в структуре и свойствах материала.

Можно представить себе некий генератор или «двигатель», действующий в указанном температурном режиме и использующий энергию, высвобождающуюся при восстановлении формы образца. Важно только для получения механической работы в процессе нагрева обеспечить необходимый подвод тепловой энергии.

С появлением сплавов с эффектом памяти формы конструкторы получили возможность использовать в своих разработках следующие уникальные свойства этих материалов:

— эффект изменения формы;

— усилия, восстанавливающие форму;

— эффект изменения формы с восстанавливающими эту форму усилиями.

Наиболее перспективными областями техники, где материалы с памятью формы находят широкое применение, являются космическая, авиационная, радиоэлектронная и электротехническая промышленность, медицинское оборудование, приборостроение и т. д. Чтобы отчетливее представить себе значение материалов с ЭПФ, рассмотрим некоторые конкретные примеры их практического использования.