Выбрать главу

Задача № 35

Перед вами справа круг, разделенный на две симетричные и равные части — на темную и на светлую. Разбейте эту фигуру одной линией на четыре равные и одинаковые части.

Задача № 36.

Некий досужий остроумец, прочитав в «Красной Вечерней Газете» о путаных адресах на письмах, с которыми почтамту столько возни и хлопот, решил испытать сообразительность почты и отправил открытку со следующим «законспирированным» адресом. Почтовый служащий оказался, однако, неглупым малым, читавшим наш отдел «Не подумав — не отвечай», и в 5 минут разобрал адрес и направил письмо куда надо и тому самому лицу, которому оно было послано. Может быть вы окажетесь также сообразительны и легко расшифруете загадочный адрес?

…………………..
От Главной Конторы журнала «МИР ПРИКЛЮЧЕНИЙ»

К сведению подписавшихся на журнал «МИР ПРИКЛЮЧЕНИЙ» с рассрочкою платежа и уплативших не более трех рублей сообщается, что во избежание перерыва в получении журнала с №. 7-го, надлежит озаботиться высылкою доплаты. При высылке очередного взноса необходимо указать, что деньги высылаются в доплату к подписке № такой-то (обозначенный в верхнем левом углу ярлычка бандероли).

…………………..
РЕШЕНИЯ ЗАДАЧ

Задача № 31.

Не отчаивайтесь, читатель, если вам не удалось обойти все мосты по одному разу. Это не удалось даже самому великому Эйлеру, а он, наверно, был не худшим математиком, чем мы с вами. Эйлер однако установил следующие правила для того, чтобы заранее сказать, — можно ли обойти все мосты по одному разу. Обозначим отдельные местности, разделенные водой, (берега и острова) буквами А, В, С, Б и напишем таблицу, где в первом столбце будут названия местностей, во втором число мостов, соединяющихся с этой местностью. а в третьем столбце половины числа этих мостов, если они четные, и половины этих чисел, увеличенных на единицу, если он не четные. Затем складываем числа последнего столбца. Однократный полный обход мостов возможен только тогда, когда сумма эта равна числу мостов или больше его на единицу. Следует также заметить, что в первом случае (т. е. при равенстве суммы числу мостов) обход надо начинать с местностей, имеющих четное число мостов, а во втором случае — с местностей, где число мостов нечетное. Для Кенигсбергской задачи получим таблицу:

Так как число мостов 7, а 9 больше 7 + 1, то задача не разрешима.

Задача № 32.

Составив таблицу (см. реш. 1-ой задачи), увидим, что сумма цифр третьего столбца равна 19, т. е. на единицу больше, чем число всех мостов. Значит — обход возможен. Один из таких возможных маршрутов показан на помещаемом рисунке. Ленинградские мосты позволяют еще более обобщить закон Эйлера. Не прибегая к составлению таблиц, можно заранее сказать, что задача разрешима: 

а) если все местности обладают четным числом мостов (при чем обход можно начать, откуда угодно); 

б) когда местностей с нечетным числом мостов только две и когда обход начинается с одной из них и оканчивается на другой. 

Задача № 33.

Сатин стоил 60 копеек за метр, полотно — 90 копеек.

Задача № 34.

Эту фигуру можно разрезать так, как показано на рисунке.

Задача № 35.

Этого легко достичь, пересекая центр круга такой же волнистой линией, которая делит его на темную и светлую часть.

Задача № 36.

Истинный адрес таков: Ленинград.

Улица 3 июля

Дом — 85 (в «О» семь-десять-пять)

Кварт—16 (шесть-над-цать)

Восторгову (в-«О»-сто-р-го-в «у»).

ЗАДАЧИ

Задача № 37.

Хороший ли вы счетчик? Вот портреты девяти бравых игроков в футбол, расположенные по возрасту. Каждый игрок, начиная с № 1, старше своего соседа на 1/2 года. Сумма лет первых пяти игроков равна 7/8 суммы возрастов последних пяти. Лучшему игроку — голкиперу — 16 лет от роду. Сколько лет каждому игроку и где портрет голкипера? Если вы хорошо считаете, вы решите задачу в 8 мин.