Рисунки Ю. Сарафанова
И действительно, три года назад группе исследователей под руководством Дж. Фридмана удалось придумать такой метод, который позволял измерять вероятность обнаружения в СКВИДе того или иного направления кольцевого тока. И оказалось, что при определенной частоте излучения вероятности обнаружения оба эти состояния становятся одинаковыми, иными словами, ток как единое целое с равной вероятностью находится в обоих состояниях сразу. Почти одновременно такой же поразительный результат получила другая группа ученых под руководством Каспара ван дер Валя.
Взятые вместе, оба эксперимента показали, что квантовые свойства присущи не только отдельным микрочастицам, но и кольцевому току таких частиц, как единому целому, как единой физической системе, хотя эта система включает уже не одну, не десяток и не сотню, а миллиарды частиц. Грубо, но наглядно результаты Фридмана и ван дер Валя говорят, что кольцо тока словно бы непрерывно осциллирует между двумя возможными состояниями, «мгновенно» перепрыгивая из одного в другое, так что в любой данный момент нельзя сказать (не воздействуя на систему извне, «не вскрывая» ее), в каком именно направлении идет ток — по часовой стрелке или против нее.
Этот результат, кстати, имеет важное практическое значение, поскольку дает основание думать, что в будущих квантовых компьютерах удастся применять достаточно «крупные» логические элементы, сохраняя их квантовые свойства и в то же время позволяя ими манипулировать, то есть направленно перебрасывать в нужное состояние. Однако в отношении поставленного Шредингером принципиального вопроса о границах действия квантовых закономерностей этот результат, как выразился один теоретик, «означает лишь, что шредингеровская кошка немного потолстела, но все еще не достигла подлинно макроскопических размеров».
Прошло время, и вот теперь группа ученых во главе с упомянутым выше Роджером Пенроузом выдвинула идею еще более тонкого эксперимента, который, по их мнению, открывает долгожданную возможность продвинуться в этом вопросе до подлинно макроскопических областей. В эксперименте, предлагаемом этой группой, главную роль играет интерферометр — устройство, предназначенное для расщепления светового луча надвое, пропускания обоих полученных лучей по двум разным путям и затем сведения их с помощью зеркал вместе для взаимного погашения или усиления. Оказывается, если пропустить через такое устройство одну- единственную частицу света — фотон, то она благодаря своим квантовым свойствам проходит в нем сразу по двум путям и дает на выходе такую же интерференционную картину, какую можно было бы ожидать от обычной волны.
Пенроуз и его коллеги предлагают воспользоваться этим, давно уже установленным фактом и, «расщепив» фотон, направить его по таким двум путям, двум «плечам» интерферометра, только в одном «плече» поместить крохотное зеркальце на тончайшем, покачивающемся металлическом рычажке. Это зеркальце, хоть и размером не больше самой малой клетки человеческого организма (10 микронов толщиной, 5 миллионных грамма весом), тем не менее будет вполне «макроскопическим», и вот оно-то и заменит в эксперименте шредингеровскую кошку.
Если бы фотон был классической частицей, он шел бы либо по одному, либо по другому плечу интерферометра, то есть либо ударял бы зеркальце, качнув его на рычажке, либо не ударял. Будучи частицей квантовой и потому двигаясь сразу по двум путям, он одновременно должен и ударять зеркальце, и не ударять его. Отразившись от зеркальца, фотон в дальнейшем воссоединится с самим собой и даст на экране прибора некую интерференционную картину, характер которой, согласно квантово-механическим расчетам авторов, должен быть разным в зависимости от того, качнулось зеркальце от попадания фотона, не качнулось или качнулось и не качнулось сразу (!)
Пенроуз впервые выдвинул эту идею для неких надобностей космонавтики. Его коллега, калифорнийский физик Боумистер, сообразил, что с ее помощью можно выяснить судьбу шредингеровской кошки. Два оксфордских физика, Маршалл и Саймон, рассчитали, при каких условиях эксперимент окажется достаточно чувствительным. Температура должна составлять всего несколько миллионных долей градуса выше абсолютного нуля. Вакуум должен быть почти абсолютным. О зеркальце уже сказано выше. На роль рычажка требуется что-то вроде углеродной микротрубочки нанометрового диаметра. Сегодняшняя технология еще не может выполнить все эти условия сразу, но, по мнению авторов, лет через пять эксперимент, несомненно, окажется возможным.