Выбрать главу

Рис. 6. Рихтовочные молотки

Рис. 7. Поддержки

Рис. 8. Рихтовочный инструмент

Устранение трещин и разрывов в панелях кузова автомобиля обычно производят с помощью газовой сварки. Лучших же результатов добиваются при применении электродуговой сварки в среде углекислого газа, так как при этом и качество, и производительность сварки значительно выше.

Газовой сваркой устраняют трещины и разрывы на панелях, изготовленных из листовой стали толщиной 0,5…2,5 мм. С целью предотвращения распространения трещины по длине в процессе сварки концы трещины засверливают. Затем выполняют сварку горелками ГСМ-53 или ГС-53 с наконечниками № 1 для листов толщиной 0,5…1,5 мм и наконечником № 2 для листов толщиной 1,0…2,5 мм при предельном давлении кислорода 0,1…0,4 МПа. Для сварки применяется проволока марки Св.08 или Св.15 диаметром 0,5∙h + 1 мм, где h — толщина свариваемого листового материала панели. Для предотвращения коробления при нагреве сварку производят вначале в отдельных точках, расстояние между которыми колеблется от 10 до 30 мм. Затем проваривают отдельными участками сплошным швом в направлении от концов трещины к середине.

После сварки шов проковывают с помощью рихтовочного инструмента (см. рис. 6–8), неровности снимают напильником и заполняют впадины шпатлевкой.

О газовой, контактной и электродуговой сварке

Многие автолюбители знают не только о существовании такого процесса, как сварка, но и умеют ею пользоваться.

При ремонте автомобильного кузова с помощью газовой сварки необходимо работать с нейтральным пламенем горелки. Такое пламя образуется при смешивании кислорода и ацетилена в соотношении 1,1:1. Нейтральное пламя отличается четким, коротким зеленовато-голубым внутренним слабо светящимся конусом. Оранжевое пламя, образующееся при избытке ацетилена, нежелательно, так как при этом сварочный шов получается твердым и хрупким и трудно поддается проковке.

Для создания оптимального режима сварки конец внутреннего зеленовато-голубого конуса пламени располагают на расстоянии 2…5 мм от свариваемой поверхности. Нагретый пламенем металл расплавляется, и в месте сварки образуется сварочная ванна. По большей части в ванну вводят присадочный материал, который получается от расплавления в том же пламени сварочной проволоки. Газовое пламя, помимо высокотемпературного нагрева металла, обеспечивает также защиту расплавленного металла от окисления. Для сварки элементов кузова автомобиля, имеющих толщину металла до 4 мм, применяется левое движение горелки (рис. 9). Газовые горелки и наконечники выбирают в зависимости от толщины свариваемого металла.

Рис. 9. Сварка при перемещении горелки влево

Наконечником № 1 горелку оснащают при толщине свариваемого материала до 1,5 мм, при этом расход ацетилена составляет 135 л/ч; наконечником № 2 — при толщине 3 мм расход ацетилена 250 л/ч; № 3 — при толщине 4 мм расход ацетилена 400 л/ч; № 4 — при толщине от 4 до 7 мм расход ацетилена 700 л/ч.

Следует знать и использовать на практике возможности ацетиленкислородного пламени, которое в зависимости от соотношения в поступающих в горелку газов может быть нормальным, или нейтральным (об этом уже говорилось), окислительным или науглероживающим. Так, окислительное пламя, как правило, применяют при сварке латуни. В этом случае поддерживают соотношение кислорода и ацетилена в пределах 1,3:1, при этом пламя имеет бледную окраску, выглядит укороченным с нечетким очертанием заостренного ядра.

Для сварки чугуна, наоборот, необходимо соотношение кислорода и ацетилена в пределах 1:1 и менее. Такое пламя желтоватой окраски имеет расплывчатое ядро, на конце которого виден зеленый венчик. Увеличенное содержание ацетилена в таком пламени способствует науглероживанию свариваемого металла.

Как уже отмечалось, при сварке элементов кузова автомобиля применяют левый способ перемещения горелки. Этот способ применяют из-за надежного формирования шва, так как пламя не препятствует наблюдению за переносом присадочного материала в ванну свариваемых металлов. Траектория движения горелки и прутка присадочного металла зигзагообразная, встречно пересекающаяся (рис. 10).