Самое крупное достижение, полученное в уже проведенных экспериментах, которое отметил директор проекта EAST Вань Юаньси, — это соотношение потраченной и полученной энергии, которое составило 1:1,25. Что касается планов на будущее, то, по словам ученого, планируется повысить это значение до 1:50. Таким образом, можно говорить, что, по крайней мере, с точки зрения энергозатрат, термоядерный синтез уже не убыточный. Однако, по самым оптимистичным оценкам экспертов, о коммерческой эксплуатации реактора можно будет говорить лишь через полвека.
На строительство реактора Институт физики плазмы Китайской академии наук потратил около $25 миллионов. По сравнению с другими аналогичными устройствами, созданными в Европе, китайский вариант оказался самым дешевым и строился быстрее всех.
Биологи работают над генетическим выключателем ВИЧ
ВИЧ и его основные ингредиенты
Подбором определенных белков и ферментов можно заставить ВИЧ, заразившие клетки иммунной системы, перейти в "спящий" режим. Таков основной вывод работы Леора Вейнбергера и Томаса Шенка из университета Принстона.
Ученые разобрались в цепочках биохимических реакций, влияющих на молекулярные сигналы, заставляющие ВИЧ приступить к копированию самого себя. Ключевую роль в запуске размножения вируса играет ВИЧ-белок Tat. Исследователи идентифицировали участок генома вируса, ответственного за его синтез. Как выяснилось, другой важный компонент сигнала на размножение — фермент р300, существующий в Т-лимфоцитах. Присоединяясь к Tat, он формирует окончательное сообщение.
Между тем другой фермент в Т-клетке, по имени SirTl, способен подавлять синтез Tat. А поскольку размножение вируса начинается после появления далеко не первой связки молекул Tat и р300, а накопления большого числа таких соединений, баланс между синтезом р300 и SirTl в зараженной клетке может оказаться тем переключателем, который будет определять размножение вируса или отсутствие оного.
Пока авторы работы не выяснили всех деталей этих химических цепочек и не определили всех их участников. Но они утверждают, что, разобравшись с этими взаимосвязями, можно создать препарат, который будет держать данный переключатель в положении "выключено", и ВИЧ останется пассивным.
Вейнбергер подчеркнул, что данное открытие имеет значение, прежде всего, для фундаментальной науки, но добавил, что потенциально оно может привести к появлению (в течение десятилетия) новых препаратов, способных пусть и не вылечить человека от заражения ВИЧ, но зато подавить размножение этого вируса в организме.
Пульсар в Крабовидной туманности имеет четыре полюса
Крабовидная туманность, известная также как M1, NGC 1952 или просто "Краб"
Пульсар, находящийся в центре Крабовидной туманности, может иметь больше двух полюсов. Такое сенсационное заявление сделал заместитель директора обсерватории Arecibo Тим Хэнкинс и Джин Эилек, его коллега из технологического института Нью-Мехико.
Обычно пульсары имеют пару магнитных полюсов — северный и южный. Однако для радиосигнала, исходящего от пульсара Крабовидной туманности, такая простая модель не подходит. Как говорит ученый, дело в том, что этот пульсар обладает еще одним полюсом, который искажает картину магнитного поля этого объекта.
У некоторых пульсаров помимо главного пульса есть еще один — так называемый интерпульс. Считают, что каждый из этих пульсов связан со своим полюсом, и они очень похожи друг на друга. Но Хэнкинс и Эилек заметили, что у пульсара Краба основной пульс представляет собой очень короткие и мощные сигналы, тогда как интерпульс — долгие и слабые.
Более того, интерпульс характеризуется таким радиоизлучением, которое никогда не регистрировалось у пульсаров. Согласно концепции Хэнкинса, причиной необычного излучения служит еще один — третий — полюс. Вероятно, возникновение этого образования произошло в ходе формирования пульсара — мощного, сложного и ассиметричного процесса.
К этому Хэнкинс добавил то, что у изучаемого объекта должен быть еще и четвертый полюс, "дополняющий" третий, так как все магнитные поля имеют по паре полюсов.
Сверхновая уничтожила Столпы Творения
Снимок телескопа Spitzer, из которого стало известно о гибели Столпов Творения. На врезке — снимок Столпов Творения, сделанный с помощью Hubble в 1995 году
Знаменитые Столпы Творения — удивительно стройные и красивые структуры в туманности Орла, сфотографированные в 1995 году с помощью HuDDie, уничтожены взрывом сверхновой, случившимся неподалеку. Об этой космической катастрофе стало известно благодаря новым снимкам другой орбитальной обсерватории — инфракрасного телескопа Spitzer.