Оба уравнения передающей линии можно объединить, продифференцировав первое по t, а второе по x; и исключив V или I. Получится либо
(24.3)
либо
(24.4)
Мы снова узнаем волновое уравнение по х. В однородной передающей линии напряжение (и ток) распространяется вдоль линии как волна. Напряжение вдоль линии будет следовать закону V(x, t)=f(x-vt) или V(x, t)=g(x+vt) или их сумме. А что такое здесь v? Мы знаем, что коэффициент при d2/dt2 — это просто 1/v2. так что
(24.5)
Покажите самостоятельно, что напряжение для каждой волны в линии пропорционально току этой волны и что коэффициент пропорциональности — это просто характеристический импеданс z0. Обозначив через V+ и I+ напряжение и ток для волны, бегущей в направлении +x, вы должны будете получить
(24.6)
Равным образом, для волны, бегущей в направлении -х, получится
Характеристический импеданс, как мы уже видели из наших уравнений для фильтра, дается выражением
(24.7)
и поэтому есть чистое сопротивление.
Чтобы найти скорость распространения v и характеристический импеданс z0 передающей линии, нужно знать индуктивность и емкость единицы длины линии. Для коаксиального кабеля их легко подсчитать. Поглядим, как это делается. При расчете индуктивности мы будем следовать идеям, изложенным в гл. 17, § 8, и положим 1/2 LI2равным магнитной энергии, в свою очередь получаемой интегрированием e0с2B2/2 по объему. Пусть по внутреннему проводнику течет ток I; тогда мы знаем, что B=I/2pe0с2r, где r — расстояние от оси. Беря в качестве элемента объема цилиндрический слой толщины dr и длины l,
получаем для магнитной энергии
где а и b — радиусы внутреннего и внешнего проводников, Интегрируя, получаем
(24.8)
Приравниваем эту энергию к 1I2LI2и находим
(24.9)
Как и следовало ожидать, L пропорционально длине l линии, поэтому L0(индуктивность на единицу длины) равна
(24.10)
Мы уже рассчитывали заряд на цилиндрическом конденсаторе [гл. 12, § 2 (вып. 5)]. Деля теперь этот заряд на разность потенциалов, получаем
Емкость же на единицу длины С0— это С/l. Сопоставляя этот результат с (24.10), мы убеждаемся, что произведение L0C0равно просто 1/с2, т. е. v=1ЦL0C0равно с. Волна бежит по линии со скоростью света. Нужно подчеркнуть, что этот результат зависит от сделанных предположений: а) что в промежутке между проводниками нет ни диэлектриков, ни магнитных материалов; б) что все токи текут только по поверхности проводников (как это бывает в идеальных проводниках). Позже мы увидим, что на высоких частотах все токи распределяются на поверхности хороших проводников, словно они идеальные проводники, так что это предположение правильно.
Любопытно, что в этих двух предположениях произведение L0C0равно 1/с2для любой параллельной пары проводников, даже в том случае, если, скажем, внутренний шестигранный проводник тянется как-то вдоль эллиптического внешнего. Пока сечение постоянно и между проводниками нет ничего, волны распространяются со скоростью света.
Подобных общих утверждений по поводу характеристического импеданса сделать нельзя. Для коаксиальной линии он равен
(24.11)
Множитель 1/e0c имеет размерность сопротивления и равен 120p ом. Геометрический фактор In(b/a) только логарифмически зависит от размеров, так что коаксиальная линия (и большинство других линий), как правило, обладает характеристическим импедансом порядка 50 ом или что-то около этого, до нескольких сот ом.