Вообще, поскольку АЦП перемещен ближе к датчику, большая часть обработки аналогового сигнала теперь производится АЦП. Увеличение возможностей АЦП может выражаться в увеличении частоты дискретизации, расширении динамического диапазона, повышении разрешающей способности, отсечении входного шума, использовании входной фильтрации и программируемых усилителей (PGA), наличии источников опорного напряжения на кристалле и т. д. Все упомянутые дополнения повышают функциональный уровень и упрощают систему. При наличии современных технологий производства ЦАП и АЦП с высокими частотами дискретизации и разрешающими способностями существенный прогресс достигнут в интеграции все большего числа цепей непосредственно в АЦП/ЦАП. В сфере измерений, например, существуют 24-битные АЦП со встроенными программируемыми усилителями (PGA), которые позволяют оцифровывать полномасштабные мостовые сигналы 10 mV непосредственно, без последующей нормализации (например серия AD773x). На голосовых и звуковых частотах распространены комплексные устройства кодирования-декодирования — кодеки (Analog Front End, AFE), которые имеют встроенную в чип аналоговую схему, удовлетворяющую минимуму требований к внешним компонентам нормализации (AD1819B и AD73322). Существуют также видео-кодеки (AFE) для таких задач, как обработка изображения с помощью ПЗС (CCD), и другие (например, серии AD9814, AD9816, и AD984X).
Практический пример
В качестве практического примера использования DSP сравним аналоговый и цифровой фильтры низкой частоты (ФНЧ), каждый с частотой среза 1 кГц. Цифровой фильтр реализован в виде типичной дискретной системы, показанной на рис. 1.4.
Обратите внимание, что в диаграмме принято несколько неявных допущений. Во-первых, чтобы точно обработать сигнал, принимается, что тракт АЦП/ЦАП обладает достаточными значениями частоты дискретизации, разрешающей способности и динамического диапазона. Во-вторых, для того, чтобы закончить все свои вычисления в пределах интервала дискретизации (l/fs), устройство ЦОС должно иметь достаточное быстродействие. В-третьих, на входе АЦП и выходе ЦАП сохраняется потребность в аналоговых фильтрах низкой частоты (anti-aliasing filter и anti-imaging filter), хотя требования к их производительности невелики. Приняв эти допущения, можно сравнить цифровой и аналоговый фильтры.
Требуемая частота среза обоих фильтров — 1 кГц. Аналоговое преобразование реализуется фильтром Чебышева первого рода шестого порядка (характеризуется наличием пульсаций коэффициента передачи в полосе пропускания и отсутствием пульсаций вне полосы пропускания). Его характеристики представлены на рис. 1.5. На практике этот фильтр может быть представлен тремя фильтрами второго порядка, каждый из которых построен на операционном усилителе и нескольких резисторах и конденсаторах. С помощью современных систем автоматизированного проектирования (САПР) фильтров создать фильтр шестого порядка достаточно просто, но чтобы удовлетворить техническим требованиям по неравномерности характеристики 0,5 дБ, требуется точный подбор компонентов.
Представленный же на рис 1.4 цифровой FIR-фильтр со 129 коэффициентами имеет неравномерность характеристики всего 0,002 дБ в полосе пропускания, линейную фазовую характеристику и намного более крутой спад. На практике такие характеристики невозможно реализовать с использованием одних только аналоговых методов. Другое очевидное преимущество схемы состоит в том, что цифровой фильтр не требует подбора компонентов и не чувствителен к дрейфу частоты, так как она (частота) стабилизирована на кристалле. Фильтр со 129 коэффициентами требует 129 операций умножения с накоплением (MAC) для вычисления выходной выборки. Эта обработка должна быть закончена в пределах интервала дискретизации l/fs, чтобы обеспечить работу в реальном масштабе времени. В этом примере частота дискретизации равна 10 кГц, поэтому для обработки достаточно 100 мкс, если не требуется производить существенных дополнительных вычислений. Семейство DSP ADSP-21xx может закончить весь процесс умножения с накоплением (и другие функции, необходимые для реализации фильтра) за один командный цикл. Поэтому фильтр со 129 коэффициентами требует быстродействия более 129/100 мкс = 1,3 миллиона операций с секунду (MIPS). Существующие DSP имеют намного большее быстродействие и, таким образом, не являются ограничивающим фактором для этих приложений. Быстродействие серии 16-разрядных ADSP-218x с фиксированной точкой достигает 75 MIPS.