ОПРЕДЕЛЯЮЩИЕ ДИНАМИЧЕСКИЕ ХАРАКТЕРИСТИКИ АЦП
— Гармонические искажения
— Наихудшие гармоники
— Общие гармонические искажения (THD)
— Общие гармонические искажения и шум (THD + N)
— Отношение сигнал-шум и искажения (SINAD, or S/N +D)
— Эффективное количество разрядов (ENOB)
— Отношение сигнал-шум (SNR)
— Аналоговая полоса пропускания (для полного сигнала, для малого сигнала)
— Динамический диапазон, свободный от гармоник (SFDR)
— Двухтональные интермодуляционные искажения
— Многотональные интермодуляционные искажения
Рис. 2.22
Явления интегральных и дифференциальных нелинейных искажений
Одним из важнейших для понимания аспектов при определении нелинейности АЦП и ЦАП является то, что передаточная функция преобразователя данных имеет особенности, которые отсутствуют в обычных линейных устройствах типа операционных усилителей (ОУ) или усилительных блоков. Полная интегральная нелинейность АЦП обусловлена интегральной нелинейностью входного буфера, УВХ (SHA) и полной интегральной нелинейностью передаточной функции АЦП. Но дифференциальная нелинейность, которая присутствует исключительно вследствие цифрового кодирования, может значительно изменяться в зависимости от принципов применяемого цифрового кодирования АЦП. Полная интегральная нелинейность дает составляющие искажений, у которых амплитуда изменяется в зависимости от амплитуды входного сигнала.
В частности, интермодуляционные составляющие второго порядка увеличиваются на 2 дБ при увеличении сигала на 1 дБ, а составляющие третьего порядка увеличиваются на 3 дБ при повышении уровня сигнала на 1 дБ.
Дифференциальная нелинейность в передаточной функции АЦП порождает гармоники, которые зависят не только от амплитуды сигнала, но и от положения точки дифференциальной нелинейности на передаточной функции АЦП. На рис. 2.23 показаны две передаточные функции АЦП, имеющих различную дифференциальную нелинейность.
Левая диаграмма показывает погрешность, которая имеет место при наличии нелинейности в середине шкалы. Поэтому сигнал, проходящий через эту точку, и при "больших", и при "малых" сигналах подвергается искажениям, не зависящим от относительной амплитуды сигнала. Правая диаграмма показывает другую передаточную функцию АЦП, которая имеет погрешности дифференциальной нелинейности в точках, соответствующих 1/4 и 3/4 полной шкалы. Сигналы, превышающие 1/2 шкалы АЦП, подвергнутся действию этих искажений, в то время как сигналы, не превышающие 1/2 шкалы размаха, не имеют искажений.
Большинство быстродействующих АЦП разработаны так, чтобы дифференциальная нелинейность равномерно распределялась по всей ширине динамического диапазона АЦП. Поэтому для сигналов, которые находятся в пределах нескольких дБ полной шкалы АЦП, полная интегральная нелинейность передаточной функции определяет гармонические искажения. Для сигналов более низких уровней содержание гармоник определяется дифференциальной нелинейностью и в общем случае не уменьшается с уменьшением амплитуды сигнала.
Нелинейные искажения, наихудшая гармоника, общие нелинейные искажения (THD), общие нелинейные искажения плюс шум (THD + N)
Существует множество способов количественного описания искажений в АЦП. Анализ БПФ может использоваться для измерения амплитуды различных гармоник сигнала.
Гармоники входного сигнала могут отличаться от других составляющих искажений их положением в частотном спектре. На рис. 2.24 показан 7 МГц входной сигнал, дискретизированный с частотой 20 MSPS, и положение его первых девяти гармоник. Гармоники частоты fa попадают на частоты, равные |±Kfs±nfa|, где n — порядок гармоники и К = 0, 1, 2, 3….
В общем, только вторая и третья гармоники точно определены в технической документации, потому что они, как правило, наибольшие, хотя в некоторых случаях могут определять значение наихудшей гармоники (worst harmonic). Нелинейные искажения обычно определяются в дБс (децибелы ниже несущей), хотя на звуковых частотах они могут быть определены в процентах. Нелинейные искажения, как правило, определяются при входным сигнале с размахом, близким к полной шкале преобразователя (от 0,5 до 1 дБ ниже полной шкалы для предотвращения амплитудного ограничения), хотя возможно определение их и на любом другом уровне. Для сигналов с размахом, существенно меньшим полной шкалы, из-за дифференциальной нелинейности преобразователя другие составляющие (не прямые гармоники) могут ухудшать характеристики прибора.