Выбрать главу

На самом деле и Фурье, и Лагранж были, по крайней мере частично, правы. Лагранж был прав в том, что суммированием сигналов синусоидальной формы невозможно точно сформировать сигнал, содержащий вертикальный фронт. Но можно очень точно к нему приблизиться, если использовать достаточное количество гармонических сигналов. (Это описывается эффектом Гиббса и сегодня хорошо понятно ученым, инженерам и математикам).

Анализ Фурье закладывает основы многих методов, применяющихся в области цифровой обработки сигналов (ЦОС). По сути дела, преобразование Фурье (фактически существует несколько вариантов таких преобразований) позволяет сопоставить сигналу, заданному во временной области, его эквивалентное представление в частотной области. Наоборот, если известна частотная характеристика сигнала, то обратное преобразование Фурье позволяет определить соответствующий сигнал во временной области.

В дополнение к частотному анализу, эти преобразования полезны при проектировании фильтров. Частотная характеристика фильтра может быть получена посредством преобразования Фурье его импульсной реакции. И наоборот, если определена частотная характеристика сигнала, то требуемая импульсная реакция может быть получена с помощью обратного преобразования Фурье над его частотной характеристикой.

Цифровые фильтры могут быть созданы на основе их импульсной реакции, поскольку коэффициенты фильтра с конечной импульсной характеристикой (КИХ) идентичны дискретной импульсной реакции фильтра.

Семейство преобразований Фурье (преобразование Фурье, ряды Фурье, дискретные ряды Фурье и дискретное преобразование Фурье) представлено на рис. 5.2.

С течением времени принятые определения получили развитие (не обязательно вполне логичное) в зависимости от того, является ли сигнал непрерывно-апериодическим (continuous-aperiodic), непрерывно-периодическим (continuous-periodic), дискретно-апериодическим (sampled-aperiodic) или дискретно-периодическим (sampled-periodic). В данном контексте термин sampled означает то же самое, что discrete (дискретный) (то есть дискретные по времени выборки).

Единственный член этого семейства, который имеет отношение к цифровой обработке сигналов, — это дискретное преобразование Фурье (ДПФ), которое оперирует дискретной по времени выборкой периодического сигнала во временной области. Для того, чтобы быть представленным в виде суммы синусоид, сигнал должен быть периодическим. Но в качестве набора входных данных для ДПФ доступно только конечное число отсчетов (N). Эту дилемму можно разрешить, если мысленно поместить бесконечное число одинаковых групп отсчетов до и после обрабатываемой группы, образуя, таким образом, математическую (но не реальную) периодичность, как показано на рис. 5.2.

Фундаментальное уравнение для получения N-точечного ДПФ выглядит следующим образом:

По отношению к этому уравнению следует сделать некоторые терминологические разъяснения (также см. рис. 5.3). Х(k) (прописная буква X) представляет собой частотный выход ДПФ в k-ой точке спектра, где к находится в диапазоне от 0 до N-1. N представляет собой число отсчетов при вычислении ДПФ.

Обратите внимание, что "N" не следует путать с разрешающей способностью АЦП или ЦАП, которая в других главах данной книги также обозначается буквой N.

Значение х(n) (строчная буква х) представляет собой n-ый отсчет во временной области, где n также находится в диапазоне от 0 до N-1. В общем уравнении х(n) может быть вещественным или комплексным.

Обратите внимание, что косинусоидальные и синусоидальные компоненты в уравнении могут быть выражены в полярных или прямоугольных координатах, связь между которыми определяется формулой Эйлера:

еie = cos θ + j∙sin θ

Выходной спектр ДПФ X(k) является результатом вычисления свертки между выборкой, состоящей из входных отсчетов во временной области, и набором из N пар гармонических базисных функций (косинус и синус). Концепцию хорошо иллюстрирует рис. 5.4, на котором представлена вещественная часть первых четырех точек спектра (показаны только косинусоидальные гармонические базисные функции). Подобная же процедура используется для вычисления мнимой части спектра на основе синусоидальных функций.