Выбрать главу

Рис. 5.27 отражает ситуацию, когда в выборке нет целого числа периодов синусоидального сигнала. Разрывы, которые образуются в конечных точках выборки, приводят к расширению спектра анализируемого сигнала вследствие появления дополнительных гармоник. В дополнение к появлению боковых лепестков, происходит расширение основного лепестка, что приводит к снижению разрешающей способности по частоте. Этот процесс эквивалентен перемножению входного синусоидального сигнала с прямоугольным импульсом, который имеет известную частотную характеристику sin(x)/x и связанные с этим широкий основной лепесток и боковые лепестки.

Обратите внимание, что первый боковой лепесток только на 12 дБ ниже основного, и что боковые лепестки имеют спад только 6 дБ/октаву. Такая ситуация неприемлема для большинства задач анализа спектра. Поскольку в практических приложениях БПФ для спектрального анализа точные входные частоты неизвестны, следует предпринять определенные шаги к уменьшению боковых лепестков. Оно достигается выбором оконной функции с более сложной формой, чем прямоугольная. Входные отсчеты по времени умножаются на соответствующую функцию окна, что влечет за собой обнуление сигнала на краях выборки, как показано на рис. 5.28. Выбор функции окна является, прежде всего, компромиссом между увеличением ширины основного лепестка и размером боковых лепестков. Для тщательной проработки вопросов, связанных с оконными функциями, настоятельно рекомендуется обратиться к Приложению 7.

Математические функции, описывающие четыре популярные оконные функции (Хемминга, Блэкмана, Хеннинга и минимальная 4-элементная Блэкмана-Харриса), представлены на рис. 5.29.

Оцифрованные оконные функции обычно вычисляются предварительно и сохраняются в памяти DSP с целью минимизации вычислений непосредственно при реализации БПФ. Частотные характеристики прямоугольного окна, окон Хемминга и Блэкмана представлены на рис. 5.30.

Рис. 5.31 иллюстрирует компромисс между увеличением ширины основного лепестка, амплитудой первого бокового лепестка и спадом уровня боковых лепестков для популярных функций окна.

Глава 6

Цифровые фильтры

Уолт Кестер

Введение

Цифровая фильтрация является одним из наиболее мощных инструментальных средств ЦОС. Кроме очевидных преимуществ устранения ошибок в фильтре, связанных с флуктуациями параметров пассивных компонентов во времени и по температуре, дрейфом ОУ (в активных фильтрах) и т. д., цифровые фильтры способны удовлетворять таким техническим требованиям по своим параметрам, которых, в лучшем случае, было бы чрезвычайно трудно или даже невозможно достичь в аналоговом исполнении. Кроме того, характеристики цифрового фильтра могут быть легко изменены программно. Поэтому они широко используются в телекоммуникациях, в приложениях адаптивной фильтрации, таких как подавление эха в модемах, подавление шума и распознавание речи.

Процесс проектирования цифровых фильтров состоит из тех же этапов, что и процесс проектирования аналоговых фильтров. Сначала формулируются требования к желаемым характеристикам фильтра, по которым затем рассчитываются параметры фильтра. Амплитудная и фазовая характеристики формируются аналогично аналоговым фильтрам. Ключевое различие между аналоговым и цифровым фильтрами заключается в том, что, вместо вычисления величин сопротивлений, емкостей и индуктивностей для аналогового фильтра, рассчитываются значения коэффициентов для цифрового фильтра. Иными словами, в цифровом фильтре числа заменяют физические сопротивления и емкости аналогового фильтра. Эти числа являются коэффициентами фильтра, они постоянно находятся в памяти и используются для обработки (фильтрации) дискретных данных, поступающих от АЦП.