Рис. 7.39
Кластерная мультипроцессорная система лучше всего подходит для применении в приложениях, где требуется высокая степень гибкости. Особенно хорошо она подходит для систем, которые должны выполнять различные задачи, некоторые из которых запускаются одновременно. Процессоры SHARC имеют встроенный хост-интерфейс, который позволяет легко организовать взаимодействие кластера с хост-процессором или с другим кластером.
Мультипроцессорная кластерная система строится на основе нескольких процессоров SHARC, связанных между собой по параллельной шине, что позволяет процессорам осуществлять доступ во внутреннюю память друг друга, а общей глобальной памяти. Типичный кластер на основе процессоров SHARC может включать до 6 процессоров ADSP-21160 и хост процессор, который может осуществлять шинный арбитраж. Встроенная логика арбитража шины позволяет процессорам SHARC разделять общую шину. Другие встроенные возможности процессоров SHARC помогают избежать необходимости использования любых других вспомогательных аппаратных средств при организации кластерной многопроцессорной системы. Очень часто в таких системах полностью отсутствует необходимость в локальной дополнительной или глобальной внешней памяти.
Цифровой Сигнальный Процессор ADSP-TS001 — TigerSHARC™ является первым DSP компании Analog Devices, построенным по новой статической суперскалярной архитектуре. Процессор TigerSHARC™ создан для применения в оборудовании телекоммуникационной инфраструктуры и предлагает новый высочайший уровень интеграции и уникальную возможность обрабатывать 8-, 16-, 32-разрядные типы данных с фиксированной и плавающей точкой, используя одну микросхему. Каждый из этих типов данных является важным для следующего поколения телекоммуникационных протоколов, находящихся в разработке, включая IMT-2000 (также известного под названием радиопротокола третьего поколения) и xDSL (цифровая абонентская линия). В отличии от всех других DSP, процессор ADSP-TS001 имеет уникальную способность увеличивать скорость обработки в зависимости от типа данных. Более того, кристалл обеспечивает высочайший уровень производительности при обработке данных с плавающей точкой.
В оборудовании телекоммуникационной инфраструктуры протоколы вокодера и канального кодера разработаны для 16-разрядного типа данных. Для улучшения качества сигнала многие телекоммуникационные приложения используют линейную коррекцию и технологию подавления эхо-сигналов, что существенно улучшает качество сигнала и характеристики системы. Эти алгоритмы выигрывают, благодаря увеличению точности обработки при применении 32-разрядных данных и данных с плавающей точкой. Поддержка 8-ми разрядного формата данных удобна при реализации часто используемого алгоритма декодера Витерби и при обработке изображений, где RGB сигналы, представляющие основные цвета, принято представлять 8-разрядными данными. Многие из этих приложений требуют высокого уровня производительности и могут предполагать использование алгоритмов, работающих последовательно или даже одновременно.
Точные требования определяются конкретными приложениями. Гибкость архитектуры процессора TigerSHARC позволяет разработчикам программного обеспечения выполнять требования по точности, необходимые в том или ином приложении, без каких-либо потерь эффективности работы системы в целом. При использовании процессоров TigerSHARC производительность системы определяется применяемым форматом данных.
Архитектура процессоров TigerSHARC охватывает ключевые элементы целого ряда различных видов микропроцессоров. Это RISC (Reduced Instruction Set Computer), VLIW (Very Long Instruction Word) и DSP для получения наиболее эффективного цифрового сигнального процессора. Новая архитектура поддерживает на высоком уровне такие параметры, присущие DSP процессорам, как короткий машинный цикл с детерминированной длительностью, быстрая реакция на прерывания и отличный интерфейс с периферийными устройствами для поддержки высокой производительности вычислений и высокой скорости ввода и вывода данных. Чтобы достичь наиболее высоких результатов в работе ядра процессора, предусмотрены такие свойства RISC-архитектуры, как операции одновременной загрузки и сохранения данных, устройство управления выполнением команд с глубоким конвейером и предсказанием переходов, большой регистровый файл для передачи данных между вычислительными блоками. Кроме того, использование особенностей архитектуры VLIW позволяет более эффективно использовать программную память, особенно при реализации алгоритмов, характерных для задач управления.