Схема на рис. 10.21 обобщает ранее описанный подход к заземлению в устройствах со смешанными сигналами и небольшими цифровыми токами.
На аналоговую заземляющую поверхность помехи не проникают, т. к. небольшие импульсные цифровые токи протекают по небольшому контуру между VD, развязывающим конденсатором и DGND (показано жирной линией). Устройство со смешанными сигналами любого назначения рассматривается как аналоговый компонент. Шум VN между заземляющими поверхностями уменьшает запас помехоустойчивости в цифровом интерфейсе, но обычно он не вреден, если поддерживать его на уровне менее 300 мВ с помощью низкоимпедансной цифровой заземляющей поверхности на всем пути к точке заземления системы "звездой".
Однако устройства со смешанными сигналами, такие как сигма-дельта АЦП, кодеки и DSP со встроенными аналоговыми функциями, становятся все более и более насыщенными цифровыми схемами. Вместе с дополнительными цифровыми схемами цифровые токи и шумы становятся больше. Например, сигма-дельта АЦП или ЦАП содержат сложный цифровой фильтр, который существенно увеличивает цифровой ток в устройстве. Метод, который был обсужден ранее, заключался в помещении развязывающего конденсатора между VD и DGND с целью удерживать цифровые токи замкнутыми и изолированными в небольшом контуре. Однако если цифровые токи достаточно большие и имеют постоянную или низкочастотную составляющую, развязывающий конденсатор, возможно, должен будет иметь неприемлемо большую емкость. Любой цифровой ток, который протекает вне контура между VD и DGND, вынужден будет проходить через аналоговую заземляющую поверхность. Это может отрицательно повлиять на работу системы, особенно в системах с высоким разрешением.
Трудно заранее сказать, какая величина цифрового тока, текущего по аналоговой заземляющей поверхности, будет неприемлема для системы. Все, что мы можем сделать в связи с этим — это предложить альтернативный метод заземления, который, возможно, обеспечит лучшую производительность.
Альтернативный метод заземления для устройств со смешанными сигналами и большими цифровыми токами показан на рис. 10.22.
Вывод AGND устройства со смешанными сигналами связывается с аналоговой заземляющей поверхностью, а вывод DGND этого устройства связывается с цифровой заземляющей поверхностью. Цифровые токи изолированы от аналоговой заземляющей поверхности, но шум между двумя заземляющими поверхностями прикладывается прямо между выводами AGND и DGND устройства. Чтобы этот метод был успешным, аналоговые и цифровые схемы в устройстве со смешанными сигналами должны быть хорошо изолированы. Шум между выводами AGND и DGND не должен быть настолько большим, чтобы уменьшить запас помехоустойчивости или вызвать нарушение работы внутренних аналоговых схем.
На рис. 10.22 показано место возможного включения встречно-параллельных диодов Шоттки или дросселя на ферритовой бусине для соединения аналоговой и цифровой заземляющих поверхностей. Диоды Шоттки предотвращают появление больших постоянных напряжений или низкочастотных выбросов напряжения между двумя поверхностями. Эти напряжения могут даже повредить ИС со смешанными сигналами, если они превысят 300 мВ, потому что они появляются непосредственно между выводами AGND и DGND. Как альтернатива диодам Шотки дроссель на ферритовой бусинке обеспечивает связь по постоянному току между этими двумя поверхностями, но изолирует их на частотах выше нескольких мегагерц, на которых дроссель-бусинка обретает импеданс. Это защищает ИС от появления постоянного напряжения между выводами AGND и DGND, но связь по постоянному току, обеспечиваемая соединением с ферритовой бусинкой, может привести к появлению нежелательного контура заземления по постоянному току, что может быть неприемлемо для систем высокого разрешения.
Как и при рассмотрении ИС со смешанными сигналами, где просто заземления AGND и DGND было недостаточно, новые процессоры цифровой обработки сигналов (DSP), такие как ADSP-21160 SHARC со встроенной системой ФАПЧ, увеличивают требования к проектированию заземления. Система ФАПЧ ADSP-21160 позволяет внутреннему генератору ядра (определяющему время выполнения инструкций) работать на частоте в 2, 3 или 4 раза (по выбору) превышающей частоту внешнего генератора CLKIN. CLKIN — это частота, на которой работают синхронные внешние порты. Хотя это позволяет использовать внешний генератор более низкой частоты, нужно быть внимательным при соединении питания и заземления с внутренней системой ФАПЧ, как показано на рис. 10.23.