Нам нужно, чтобы капли не липли друг к другу? Значит, нужно, чтобы между каплями существовали некие силы, отталкивающие их друг от друга, силы, не дающие капелькам слипаться. "Обычный" изобретатель, привыкший иметь дело только с тем, что видно глазу, так и останется в недоумении: ну, где он возьмет силы отталкивания? А изобретатель-тризовец скажет: да зарядите вы воду статическим электричеством, наэлектризуйте капли! И они будут сами друг от друга отталкиваться. Кстати, наэлектризовать струю воды очень несложно, а результат вы увидите, когда получите очередной счет за воду: расход драгоценной жидкости для полива уменьшится раза в два…
Метод электризации изобретатели, если не забывают о "веполе", используют очень часто. Скажем, вам нужно быстро и эффективно высушить много меховых шкурок после влажной очистки. Все просто: вы заряжаете шкурки электричеством, слипшиеся щетинки распушиваются, отделяются друг от друга, и мех сохнет в несколько раз быстрее. Или вот, "женское" изобретение: способ быстрого получения пышной прически. Женщину в парикмахерской сажают на… "электрический" стул с изолированными ножками и подводят напряжение. Волосы тут же встают дыбом, их укладывают, как угодно душе заказчицы, и остается лишь побрызгать лаком (кстати, тоже наэлектризованным для экономии материала).
Попробуйте решить задачку. Эталон прямолинейности — туго натянутая стальная нить. Но она все равно прогибается под действием поля тяжести. Что нужно сделать, чтобы нить осталась прямой? Задача простенькая, если не забывать о "веполе".
Надо сказать, что изобретатели очень вольно обращаются с известными науке полями. В школе мы проходили, что есть поле электромагнитное, есть поле тяжести, а есть еще еще два, от которых нам ровно никакой пользы: ядерное и слабое. Эти два последних поля в изобретательстве не используются — разве что для развития воображения. А вместо них придумали несколько других полей: механическое и тепловое, оптическое и звуковое… Для облегчения рассуждений. Фантазировать так фантазировать. Если вы получили по уху, значит, на вас по действовали механическим полем, только и всего. А если ошпарились кипятком, значит, ощутили действие теплового поля. Все просто и понятно.
Так вот, и методика развития воображения, и теория изобретательства утверждают: если хотите, чтобы получилась хорошая идея, нужно обязательно использовать какое-нибудь поле. Хотите, допустим, придумать новый фантастический скафандр. Непременно сделайте так, чтобы в этом скафандре использовалось какое-нибудь поле. Например, электромагнитное. Как? А хотя бы так: сделайте матерчатый скафандр двухслойным и зарядите электричеством. Тогда внутренняя оболочка будет отталкиваться от внешней, скафандр станет жестким — что и нужно для работы в космосе.
Кстати, вы умеете управлять полем тяжести? Наверняка нет. Никто пока не умеет. Поэтому поле тяжести в изобретательских "веполях" не используется — только при конструировании новых фантастических идей. Ядерное и слабое поле — тоже. Изобретателям подавай что попроще — поля механические, тепловые, электромагнитные.
Выше я рассказывал о том, как один умный школьник решал задачу о "тяжелой воде" — он предложил бросить в воду много мелких металлических шариков. Мальчик-то умный, но не подумал о "веполе". Если уж действовать по правилам развития воображения, нужно не просто бросить в воду металлические шарики, но еще и намагнитить их. Появляется поле — магнитное, и как упрощаются многие проблемы. Нужно вытащить шарики? Возьмите магнит. Нужно, чтобы шарики собрались у одной из стенок? Возьмите магнит…
А вот пример из практики. Иногда танкеры сбрасывают в море воду, загрязненную нефтью. За такие штучки полагается большой штраф, но попробуй, выясни, с какого именно танкера сброшена грязная вода! Нужно создать "веполь": когда на танкер загружается нефть, в нее добавляют мельчайшие магнитные частицы (для каждого танкера — свой сорт). Если в море обнаружили нефтяное пятно, берут пробу нефти и сразу же говорят: это пятно с танкера "Мария Медичи"…
Теперь — задача. Как-то для одного эксперимента нужно было сжать стальную пружину, поместить ее внутрь прибора, причем там, чтобы она не разжалась, и оставить. По условиям опыта, пружина должна была разжаться этак через полчаса. Сжать-то просто, но ведь это пружина — она сразу распрямится, едва ее отпустить! Связать? Нельзя, ведь внутри прибора пружина должна быть свободна…