Точки подключения конденсаторов и микроконтроллера к земле печатной платы играют существенную роль. Малейший перекос земляных потенциалов между С1 и VSS, возникающий при прохождении НП по земле устройства, будет многократно усилен и попадет внутрь микроконтроллера как ложный короткий тактовый импульс. Поскольку длительность ложного тактового импульса намного меньше чем длительность "настоящих" тактовых импульсов, внутренняя логика микропроцессора может придти в непредсказуемое состояние. Микропроцессор "зависнет", и не всякий встроенный сторожевой таймер сможет его сбросить, так как в некоторых микроконтроллерах сторожевые таймеры тактируются от общего генератора, и сами могут "зависнуть" после воздействия такой помехи.
На фиг.6 показаны примеры разводки этого узла на печатной плате.
Фрагмент слева разведен обычным образом, в предположении что потенциалы земель во всех точках печатной платы равны. Конденсаторы С1 и С2 подключены к земле точно так же, как и все остальные элементы схемы, толщина земельных проводников выбрана большой. Такая разводка встречается часто, но, к сожалению, она не обеспечивает хорошей помехоустойчивости.
Фрагмент справа разведен таким образом, чтобы помеховый ток не протекал по дорожке, соединяющей конденсаторы С1 и С2 с земляной ножкой микроконтроллера. Эта дорожка образует участок чистой земли. Помехоустойчивость устройства с такой разводкой максимальна.
Пример 2
Вход сброса микроконтроллера является еще одной цепью, подверженной влиянию наносекундных помех. Нередко разработчики игнорируют этот очевидный факт и используют разветвленную цепь сброса, непосредственно подключенную к различным узлам на плате. Перекос земель между источником сигнала сброса (часто это супервизор питания) и микроконтроллером вызывает ложный сброс устройства.
Схемотехнически решить эту проблему нетрудно, достаточно на вход микроконтроллера добавить простую RC-цепочку, как показано на фиг.7. Однако такое решение должно сопровождаться и правильной разводкой земель, иначе никакой пользы оно не принесет.
Требования к разводке дорожки, соединяющей С3 с земляной ножкой микроконтроллера, такие же как для первого примера: никакие другие детали кроме С3 к этой дорожке подключать нельзя. Исключение составляют только конденсаторы обвязки кварца (С1 и С2 на фиг.5).
Пример 3
Обеспечить высокую помехоустойчивость устройства можно на этапе общей компоновки. Типичное устройство, при компоновке которого вопросы помехоустойчивости не были приняты во внимание, показано на фиг. 8. Для подключения внешних сигналов и питания в нем использованы все четыре кромки печатной платы. Микропроцессор расположен почти в центре печатной платы, то есть в месте максимально подверженном влиянию наносекундных помех. В случае использования сплошной земли, очень вероятно что такое устройство будет сбоить.
Не меняя компоновки, существенного улучшения помехоустойчивости в таком устройстве можно достичь, если разделить земли на чистую и грязную, как условно показано на фиг.8. Наружный контур земли является грязной землей, он специально предназначен для распространения наносекундных помех. К грязной земле нельзя подключать устройства, чувствительные к помехам.
Внутренний "полуостров" чистой земли соединен с грязной землей в одной точке. Во все сигнальные линии, проходящие между чистой и грязной землями, необходимо добавить резисторы или дроссели, чтобы преградить путь помехам (барьеры).
Дальнейшее улучшение помехоустойчивости достигается перекомпоновкой устройства, как показано на фиг.9. Видно, что все терминалы сосредоточены с одной "грязной" стороны платы. Тем самым путь распространения помех по земле платы значительно сокращен.
После того как внутренние земли устройства разделены на чистые и грязные, возникает вопрос — как предотвратить проникновение помех из грязной земли в чистую? Например, в устройстве фиг.4 узел 2 подключен к чистой земле, но он обменивается сигналами с узлом 3, который подвержен влиянию помех. В приведенном выше примере 3 было упомянуто, что сигнальные цепи, соединяющие узлы на чистой и грязной землях должны содержать помеховые барьеры — резисторы или дроссели. Практика показывает, что повсеместное использование барьеров обычно повышает помехоустойчивость устройства в несколько раз.