Выбрать главу

При создании ассоциаций предполагается, что клетки и их популяции должны приобретать новые свойства, обусловленные присутствием в них микроорганизмов.

Цели создания популяций:

1. Экспериментальная проверка гипотезы теории симбиотического происхождения эукариотической клетки, которое предположительно проходило через стадии эндо- и экзосимбиоза. Реконструкция отдельных стадий эволюционного процесса симбиогенеза.

2. Моделирование природных симбиотических отношений растений и микроорганизмов, играющих огромную роль в процессе фиксации атмосферного азота (обеспечение связанным азотом природных экосистем, а также агроценозов).

3. Повышение продуктивности растительных клеток-продуцентов экономически важных веществ.

4. Получение растений с новыми свойствами, при условии, что отношения, складывающиеся между клетками партнеров при совместном выращивании, сохраняются в растениях-регенерантах. В литературе обсуждаются возможность улучшения таким способом сельскохозяйственных растений, а также получение растений со способностью к автономной фиксацией азота.

Первые две цели имеют значение для решения теоретических вопросов биологии, последние две носят ярко выраженный прикладной характер.

Повышение продуктивности сельскохозяйственных растений

Одна из целей культивирования растительных клеток — получение важных для медицины и ряда отраслей промышленности веществ. Для того чтобы производство было рентабельным, необходимо культивировать их на простых по составу пита тельных средах. В то же время, среды достаточно сложны по составу и включают в себя витамины, гормоны, источники углеродного питания, так как клетки в культуре являются гетеротрофами или обладают ограниченной способностью к фотосинтезу. Совмещение в культивируемых клетках способности к фотосинтезу и биосинтезу специфических продуктов — маловероятно. Поэтому введение в такие культуры микроорганизмов, синтезирующих субстраты для роста растительных клеток или предшественники для биосинтеза полезных веществ представляется весьма заманчивым.

В микробиологии опыт смешанного культивирования есть. Он показывает, что системы микроорганизмов более эффективны, чем монокультуры. Их используют для очистки сточных вод, получения ферментов, биологически активных веществ (ауксины, витамины, антибиотики). Считается, что в биотехнологии найдут применение смешанные популяции, включающие в себя как сочетания нескольких штаммов микроорганизмов, так и представителей царств растений и животных.

Улучшение сельскохозяйственных растений предполагает получение растений, способных к фиксации молекулярного азота.

При внесении удобрений используется от 30 до 50 % внесенного азота. Другой путь поступления азота — биологическая фиксация молекулярного азота. Большая часть осуществляется азотфиксирующими симбионтами, но этот процесс характерен лишь для некоторых видов высших растений и микроорганизмов. Для повышения доли биологической фиксации азота используют 3 подхода:

1. Инокуляция азотфиксирующими микроорганизмами (бактериальные удобрения). Недостаток — низкая выживаемость интродуцируемых чистых культур и вытеснение их естественной почвенной микрофлорой.

2. Создание азотфиксирующих растений методами генной инженерии. При этом предлагается вводить гены nif в протопласты высших растений. Препятствия на этом пути: процесс требует большого количества энергии, которой нет в растительной клетке, нет также систем транспорта, запасов железа и молибдена, необходимых для синтеза нитрогеназы, нет систем защиты нитрогеназы от инактивации кислородом.

3. Введение целых азотфиксирующих организмов в растения. Такие ассоциации должны учитывать особенности организации природных азотфиксирующих симбиозов:

— целостность обоих партнеров,

— интеграция партнеров в пределах организма макросимбионта,

— относительная обособленность макросимбионта.

С помощью клеточной инженерии можно осуществить жизнедеятельность азотфиксирующих организмов в клетках и тканях культурных растений. При этом возможна проверка большого числа сочетаний партнеров. В процессе культивирования возможна также адаптация партнеров друг к другу. Кроме того, бактериальные симбионты могут быть интегрированы в ткани растений с сохранением их интактности, что позволит оградить нитрогеназу от кислорода, выделяемого растением в процессе фотосинтеза.