Выбрать главу

Рис. 8. Схема с переменным током в нагрузке

Сравнив описанные выше схемы с применением ОУ и имея в виду применение ОУ с малыми входными токами, приходим к выводу, что наиболее точно силу тока в нагрузке можно получить в схеме рис. 5. Во всех источниках тока, кроме схемы рис. 3, имеются жесткие ограничения, накладываемые на величину напряжения на нагрузке, связанные с максимальным выходным напряжением ОУ. В схеме рис. 3 можно получить любое требуемое напряжение на нагрузке путем соответствующего выбора напряжения питания нагрузки Un. При этом нужно учитывать лишь одно ограничение — максимально допустимое коллекторное напряжение транзистора VT1.

Во всех схемах источников тока с ОУ для обеспечения нормальной работы ОУ и для повышения точности установки выходного тока необходимо в качестве регулирующего элемента использовать супер-бета или составные транзисторы.

В ряде случаев требуется сформировать в нагрузке ток, переменный как по величине, так и по направлению. Для таких применений хорошо работает схема [4], приведенная на рис. 8. Эта схема, как и все предыдущие, может быть получена из общей функциональной схемы рис. 1 при условии, что два одинаковых источника тока — один для тока положительной полярности, а другой для отрицательной — работают на общий датчик тока (резистор R6) и общую нагрузку с комплексным сопротивлением Zн и имеют общую цепь обратной связи. В этой схеме выходной ток Iн в точности повторяет форму входного напряжения Uвх и определяется выражением

Iн = ((Uвх + Uн) — Uн)/R6 = Uвх/R6 (9)

При указанных на схеме номиналах источник тока преобразует входное напряжение от —10 до +10 В в ток от —10 до +10 мА. Для достижения высокой точности преобразования нужно использовать резисторы Rl — R6 с допуском не более 1 %. Недостатком приведенной схемы являются жесткие ограничения на величину выходного напряжения, связанные с максимальным выходным напряжением ОУ и определяемые неравенствами

UвxUн < UвыхОУ = UnОУ;

Uвx + Uн < IнR6 + IнRн < UnUКЭнас = Un. (10)

При UnОУ = Un остается одно неравенство

Uвx+ Uн < Uп. (11)

В этой схеме можно использовать практически любые ОУ с соответствующими цепями коррекции. Следует только учитывать, что более высокая точность преобразования напряжения в ток получается при использовании ОУ с малыми входными токами и малыми напряжениями смещения. В качестве регулирующих транзисторов VT1 и VT2 можно взять любые маломощные транзисторы с максимальным коллекторным напряжением более 30 В и током коллектора 20…150 мА.

Одним из применений источников тока является заряд аккумуляторных батарей. Такой источник должен обеспечивать ток, равный 0,1 от емкости заряжаемой батареи, и продолжительность зарядки 14…15 ч [5, 6]. Известны также способы заряда аккумуляторов асимметричным током [7, 8]. Однако, несмотря на ажиотаж, поднятый вокруг них в литературе, они пока не получили широкого распространения, так как там требуется индивидуальная зарядка каждого из аккумуляторов батареи и сложные методы контроля их степени заряженности по температуре, напряжению, давлению или другим признакам [8]. Это связано с тем, что физико-химические процессы, происходящие в аккумуляторе при зарядке его постоянным и асимметричным токами, различны.

Рассмотрим устройство для зарядки аккумуляторных батарей типа 7Д-0,115 (рис. 9).

Рис. 9. Схема устройства для зарядки аккумуляторных батарей 7Д-0.115

Схема позволяет заряжать батарею постоянным током 11,5 мА, а по окончании зарядки автоматически отключается. Кроме того, есть защита от короткого замыкания в нагрузке. Устройство представляет собой простейший источник тока (см. рис. 2,а) и включает дополнительно ИОН на светодиоде HL1 и автоматическую схему отключения тока по окончании зарядки, которая выполнена на стабилитроне VD1, компараторе напряжения на ОУ DA1 и ключе на транзисторе VT1. Сила зарядного тока (11,5 мА) устанавливается резистором R7 в соответствии с выражением