Выбрать главу

Рис. 13. Увеличение силы тока в зависимости от напряжения и внутреннего диаметра капилляра.

Условия: прибор для КЭ — МП-lipore Quanta 4000; капилляр — 360 мкм (внешний диаметр), 50/56 см; буфер (А): 20 мМ борат, pH 10.0; буфер (В): 25 ММ ЦАПК. pH 11,0.

Поэтому концентрацию буфера необходимо подбирать применительно к конкретной проблеме разделения (диссоциация и подвижность пробы). Кроме того, разница в подвижности между ионами пробы и буфера может привести к изотахофоретическому эффекту. Это дает в большинстве случаев треугольную форму пика, которая вызывает проблемы при интегрировании.

При этом, если электропроводность зоны пробы больше, чем у разделительного буфера, это приводит к разбавлению пробы при ее вводе. Это объясняется законом Кольрауша, который требует постоянной электропроводности на всем участке разделения.

i — ионы в зоне разделения, ωi — функция Кольрауша.

Если при этом существует еще и разница в подвижности между ионами пробы и буфера, то происходит искажение формы пика. Эта сложная взаимосвязь наглядно обобщена еще раз в таблице 3.

Электропроводность буфера в зонном электрофорезе должна быть одинаковой на всем участке разделения. Только этим обеспечивается то, что напряжение на участке разделения падает равномерно и скачков напряженности поля не возникает.

Появление градиента напряженности электрического поля в зоне перемещения молекул пробы определяется ионной силой (или концентрацией) буфера. Если электропроводностью зоны пробы нельзя пренебречь по сравнению с электропроводностью буфера, это приводит к уширению полос. Эффект усиливается с ростом различия в подвижностях ионов пробы и буфера.

Рис. 14. Схематическое объяснение уширения полос электрической дисперсии

Из-за скачка напряжения на границе пиков происходит деформация и образуются крутой и пологий края пика. На рис 15 представлена зависимость значений Н от концентрации боратного буфера для четырех соединений. Значения Н при этом для всех веществ с увеличением концентрации буфера снизились, например, для (1-гидроксибензойной кислоты с 31 мкм до 4 мкм.

Для ионов пробы с большим отличием в подвижности от ионов буфера значение Н на несколько порядков выше, чем в случае пробы, имеющей подвижность такую же, как у ионов буфера.

Эти явления более подробно рассмотрены в главе "Непрямое УФ-детектирование", поскольку при этом способе детектирования часто необходимо использовать маленькие концентрации буфера.

Рассмотрим эти проблемы на примере разделения гомологического ряда карбоновых кислот.

В то время как низшие гомологи детектируются с отчетливым искажением, каприловая кислота выходит в виде симметричного пика. Карбоновые кислоты, перемещающиеся медленнее, обладают значительно меньшей подвижностью, чем ионы буфера, и поэтому детектируются в виде асимметричных пиков с увеличивающимися "хвостами".

Рис. 15. Влияние концентрации буфера на уширение полос.

Условия: прибор для КЭ — Beckman Р/АСЕ 2000; капилляр — 50 мкм, 54/51 см; поле 400 В/см; буфер: борат, pH 8.5; ввод пробы — давлением, 1 с.; детектирование — 214 нм: А — фенилтриметиламмонийхлорид, В — фталевая кислота, С — п-гидроксибензойная кислота, D — бензиновый спирт.

5.4. Адсорбция на стенках

Молекулы пробы могут адсорбироваться на стенках за счет взаимодействия с отрицательно заряжеными силанольными группами кварца. При нейтральных и щелочных условиях разделения многие силанольные группы депротонируются и способствуют адсорбции положительных ионов пробы на стенке. В результате этого %-потенциал, образовавшийся на поверхности кварца, изменяется и, как следствие, изменяется подвижность электроосмотического потока, из-за чего происходит изменение времени выхода всех пиков. Кроме этого, из-за сильной адсорбции молекул пробы на стенках капилляра уменьшается интенсивность пика и это приводит в экстремальном случае к асимметричным пикам с большими "хвостами". Обработка таких пиков трудна, а часто невозможна.

Рис. 16. Влияние разницы в подвижности между ионом пробы и ионом буфера на форму пика.