Выбрать главу

Рис. 32 показывает полученную калибровочную кривую в области концентраций от 1 до 10 ppm.

Рис. 32. Калибровочные кривые, построенные по высоте пика (А) и плотили пика (В).

Условия: прибор для КЭ — Millipore Waters Quanta 4000; капилляр — 75 мкм, 50/56 см; поле — 446 В/см; буфер: S мМ имидазол/серная кислота, pH 5.3; ввод пробы гидростатический, 30 с, детектирование непрямое. 214 им; проба — калий, натрий, барии, кальций, магний и литии с концентрациями 4, 6, 8 и 10 ррт.

При КЭ, в отличие от ВЭЖХ, пробы перемещаются мимо детектора не с одинаковыми скоростями. По этой причине компоненты пробы с одинаковыми молярными коэффициентами экстинкции при одинаковом вводимом количестве проявляются в виде пиков различной площади.

В простейшем случае УФ-детектора это можно легко показать, если рассчитать время, за которое движущиеся объекты с различными скоростями проходят область УФ-детектирования.

Аналогичные явления встречаются при каждом разделении в КЭ. Компоненты пробы, которые первыми движутся мимо детектора, обладают высокой скоростью, поэтому ширина их пиков на самописце меньше. Табл. 13 показывает зависимость изменения ширины пика (в сив мм при записи на самописце) стандартного прямоугольного пика шириной 0.5 см. Если бы в КЭ отсутствовало уширение полос, то первые пики были бы самыми узкими, так как они перемещаются мимо детектора быстрее других.

Если привести полученные площади пиков к времени миграции, то получим сигнал пробы, независящий от скорости перемещения. С помощью такого нормирования удается в некоторых случаях сгладить колебания времени миграции.

Колебания ЭОП являются тем фактором, который через скорость миграции непосредственно влияет на площадь пика. На рис. 33 для некоторых тестовых соединений представлены времена миграции, соответствующие первым 27 вводам пробы.

Рис. 33. Воспроизводимость времени миграции.

После первых 4 вводов (нестационарный период) достигается первое постоянное значение, при котором время миграции колеблется весьма слабо. После 9 вводов пробы капилляр был помещен на 48 часов в разделительный буфер и после этого использовался вновь. При этом уже после короткой переходной фазы появляется большой ЭОП. Это плато остается постоянным при последующих 20 вводах.

Эти эксперименты ясно показывают, что после короткого времени установления равновесия могут быть получены воспроизводимые условия анализа. При замене буфера необходимо, однако, менять и капилляры или, по крайней мере, промывать их новым буфером от 10 до 15 минут. Так как ЭОП существенно более эффективно изменяет слой буфера на внутренней поверхности капилляра, чем приводимый в движение давлением поток, можно сильно сократить время установления равновесия, если промывать капилляр новым буфером и затем подвергать его действию электрического напряжения в течение 5-10 мин. Точное время уравновешивания капилляра нельзя привести, так как эта величина сильно зависит как от буфера, так и от конкретных стадий кондиционирования.

Кроме того, на воспроизводимость результатов сильно влияет количество вводимой пробы. Рис. 34 показывает воспроизводимость системы и точность количественного анализа в зависимости от количества введенной пробы.

Рис. 34. Воспроизводимость (площади пиков каждых 12 измерений) и уширение полос в зависимости от концентрации пробы.

В этом ряду измерений каждый из 12 анализов был проведен при различных концентрациях пробы, и определялись площади пиков. Для каждой новой концентрации пробы разделительный буфер в сосуде обновлялся. Статистическая обработка отчетливо показала, что при концентрации, которая превышает границу обнаружения от 20 до 50 раз, интегрирование пиков приводит к хорошим результатам. Воспроизводимость находится в пределах от 2 до 3 %. Ошибка очень быстро возрастает до 7 % при интегрировании вблизи границы обнаружения. В этом случае эффективность, а поэтому и возможности разделения соседних пиков улучшаются. Эффективность падает с увеличением концентрации, и при перегрузке системы (при использовании пробы с концентрацией 100 мМ) значение Н составляет 140 мкм.