Если есть градиент концентрации аттрактанта, то движение бактерии выглядит следующим образом. Бактерия начинает движение, затем останавливается и переориентируется. При этом замеряется концентрация аттрактанта путем детекции изменения уровня метилирования метилакцептирующих белков. Если концентрация аттрактанта в конечной точке меньше, чем в начальной точке трека, то следующий раунд движения мотора будет дольше (и, соответственно, пробег длиннее). Если концентрация увеличилась, то следующий пробег будет меньше (зачем же бактерии убегать из хорошего места). Понятно, что, двигаясь подобным образом, она попадет туда, куда ей надо. В изотропной среде изменение направления движения бактерий остается случайным, а длина треков приблизительно постоянно (имеет случайные отклонения от среднего).
На рисунке ниже представлен график, иллюстрирующий поведение бактерии, при добавлении аттрактанта (чем хуже бактерии, тем длиннее ее пробеги).
Ниже представлено реальное стереоизображение трека движения кишечной палочки. Фотографии делали в течение 30 секунд. Количество точек — это количество фотографий кишечной палочки. Если вы умеете смотреть стереофотографии, то можно увидеть след движения в трехмерном пространстве.
В критических ситуациях, при падении ДрН (или концентрации АТФ в клетке) ниже критической величины (то есть когда энергозапасов уже не достаточно для того, чтобы вести обычный образ жизни) тамблинг прекращается, и бактерия совершает смертельный рывок — плывет прямолинейно в случайном направлении до тех пор, пока запасы энергии не будут исчерпаны. Иногда ей везет, и она успевает за счет этого рывка из последних сил выбраться из плохого места. Но если она не находит лучшее место для жизни, то она умирает.
Некоторые бактерии в критических ситуациях способны спорулировать (кишечная палочка к этому неспособна). Споры некоторых бактерий настолько живучи, что переживают кипение. Поэтому, когда микробиологи готовят среду для каких-то важных экспериментов, то они эту среду кипятят, затем дают постоять в тепле несколько дней, чтобы споры проросли, а затем опять кипятят (дробная стерилизация).
Таким образом, поведение бактерий мы можем назвать стратегией ненаправленного (случайного) поиска оптимальных условий. То есть, не имея в силу своих маленьких размеров возможности ориентироваться в пространстве, бактерия все равно оказывается там, где ей нужно. Можно сказать, что бактерия не воспринимает пространство, то есть ее пространство нульмерное, и жизнь ее течет только во времени.
Вывод: ПОВЕДЕНИЕ БАКТЕРИИ — СТРАТЕГИЯ НЕНАПРАВЛЕННОГО (случайного) ПОИСКА ОПТИМАЛЬНЫХ УСЛОВИЙ.
Дополнительный материал. Ориентация в пространстве одноклеточных и многоклеточных эукариот
Остановимся на способах ориентации в пространстве других существ. Размер эукариотической клетки порядка 30-200 мкм. Как было посчитано выше, размеры клетки достаточны для рецептирования градиентов концентраций. У одноклеточной эвглены есть хлоропласты и она способна к фотосинтезу. Для того, чтобы она могла оказаться в месте, где возможно заняться фотосинтезом, у нее есть светочувствительный глазок и стигма (это — скопление пигмента). Сама клетка прозрачная, а стигма — нет. Во время движения эвглена все время вращается, при этом стигма периодически затемняет фоточувствительный элемент. Причем частота этого затемнения зависит от того, движется эвглена по направлению к свету прямолинейно или под углом. От фоторецептора сигнал поступает на жгутик, который переориентирует эвглену таким образом, чтобы она двигалась к свету. У эвглены, как и у инфузории, есть хеморецепция. О хеморецепции поговорим на примере инфузории. Когда инфузория движется, она «машет» своими ресничками, которые покрывают тело инфузории, причем движение клетки происходит по спирали. При этом она воспринимает из среды химические сигналы либо вибрацию той частоты, которую издает объект ее питания. Вращаясь, инфузория сканирует пространство, и если там обнаруживается сигнал, то размах вращений сужается, инфузория переориентируется таким образом, чтобы сигнал поступал на передний конец тела, и плывет дальше к жертве, удерживая этот сигнал. Таким образом, у эвглены и инфузории мир одномерный.