Выбрать главу

Вероятно, регуляция функций MX не ограничивается рассмотренными четырьмя гормонами и двумя ВП: 1) как Са2+ -мобилизующих, так и цАМФ-зависимых гормонов очень много; 2) биосинтезы (особенно матричные), ионный транспорт (особенно Na+ и К+) и мышечная работа — основные пути расхода энергии, поэтому их регуляторы должны стимулировать и энергообеспечение. Функции MX могут стимулироваться и другими ВП и их рецепторными белками. Для цГМФ и ПК С такие данные уже появились, но излагать их пока преждевременно, да и регуляторные механизмы остаются неясными.

Заключение

В каждой клетке существует комплекс сигнал-трансдукторных систем, преобразующих все внешние сигналы во внутриклеточные, а затем и во внутриорганелльные. Сигналы подавляющего большинства гормонов с рецепторов плазматической мембраны в цитозоль передаются системой вторые посредники — их специфические рецепторы (чаще всего протеинкиназы); фосфорилирование же белков изменяет их активность. Существуют и варианты: второй посредник — неферментный рецепторный белок (Са2+ — кальмодулин или цГМФ — ионный канал) и протеинкиназы (тирозинкиназы), прямо активируемые гормон-рецепторным комплексом.

В ядро сигнал обычно передается путем транслокации в него цитозольной протеинкиназы или активированного транскрипционного фактора (фосфорилированного ею или освобожденного из комплекса с другим белком). В митохондрии сигнал передается иначе — путем транслокации из цитозоля вторых посредников: Са2+ или цАМФ, которые в основном действуют не через свои специфические рецепторы, а прямо на функциональные белки митохондрий. Механизмы трансдукции в органеллах отличаются от классических цитозольных, но они обеспечивают столь же эффективный контроль гормонами ядерных и митохондриальных процессов, как и цитозольных.

ЛИТЕРАТУРА

1. Кулинский В.И. Лекционные таблицы по биохимии. Иркутск: Иркут, мед. ин-т, 1994. Вып. 4: Биохимия регуляций. 94 с.

2. Нейрохимия/Под ред. И.П. Ашмарина, П.В. Стукалова. М.: НИИ биомед. химии РАМН, 1996. С. 244–371.

3. Реутов В.П. // Успехи биол. химии. 1995. Т. 35. С. 189–228.

4. Островский М.А. // Природа. 1993. № 10. С. 23–36.

5. Терентьев А.А. // Биохимия. 1995. Т. 60. С. 1923–1952.

6. Кулинский В.И. // Успехи биол. химии. 1997. Т. 37. С. 171–209.

МОЛЕКУЛЯРНЫЕ МЕХАНИЗМЫ НЕЙРОЭНДОКРИННОЙ РЕГУЛЯЦИИ

В.А. Ткачук

Введение

Все процессы жизнедеятельности у человека и животных находятся под контролем нервных клеток, которые секретируют в синаптическую щель нейромедиаторы, и эндокринных желез, которые выделяют в кровь гормоны. Гормоны и нейромедиаторы сообщают органам и тканям, что, когда и сколько они должны производить. Когда — определяется временем секреции, сколько — количеством секретированного гормона или нейромедиатора, что — наличием рецепторов к этим молекулам только у определенной группы клеток, специализирующихся в отношении данной функции. Среди нейроэндокринных механизмов регуляции существует своя иерархия, тесно связанная со скоростями развития и гашения их сигналов, а также с молекулярными механизмами их действия (рис. 1).

Рис. 1. Три основных механизма нейроэндокринной регуляции клеток

Отклонение от нормы того или иного процесса жизнедеятельности включает нервную систему регуляции, и нейромедиаторы, изменяя активность ионных каналов (являющихся одновременно рецепторами нейромедиаторов, рис. 2), вызывают гипер- или деполяризацию мембраны. Эта регуляция клеточной активности, происходящая за счет физических процессов (перемещение ионов через мембрану), развивается и гасится за доли секунды (рис. 1, слева).

Если нервная система не в состоянии вернуть тот или иной фактор гомеостаза к норме, подключаются гормоны, действующие через мембранные рецепторы и системы вторичных посредников, которые стимулируют химическую модификацию белков. Эта регуляция (рис. 3), происходящая за счет химических процессов (синтез и расщепление вторичного посредника, фосфорилирование и дефосфорилирование белка), развивается и гасится за минуты или десятки минут (рис. 1, в центре).